K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

a) \(x^2-3x+xy-3y\)

\(=x\left(x-3\right)+y\left(x-3\right)\)

\(=\left(x+y\right)\left(x-3\right)\)

b) \(x^2+y^2-2xy-25\)

\(=\left(x+y\right)^2-5^2\)

\(=\left(x+y+5\right)\left(x+y-5\right)\)

c) \(4x^2-4xy+y^2=\left(2x-y\right)^2\)

30 tháng 9 2019

m) \(81-x^2+2xy-y^2\)

\(=9^2-\left(x-y\right)^2\)

\(=\left(9-x+y\right)\left(9+x-y\right)\)

k) \(x^2-xy-x+y\)

\(=x\left(x-y\right)-\left(x-y\right)\)

\(=\left(x-1\right)\left(x-y\right)\)

15 tháng 10 2020

a , \(-q^3+12q^2x-48qx^2+64x^3\)

 \(=-\left(q^3-12q^2x+48qx^2-64x^3\right)\)

\(=\)\(-\left(q-4x\right)^3\)

b , x+ 2xy - y- 9 

= - ( x2 - 2xy + y2 ) - 9

= - ( x - y )2 - 9

= ( - x + y - 3 ) ( x - y + 3 )

3 , 1 - m2 + 2mn - n2

= 1 - ( m2 - 2mn + n2 )

= 1 - ( m - n )2

= ( 1 - m + n ) ( 1 + m - n )

4 , x3 - 8 + 6a2 - 12a

  = x3 +  6a2 - 12a + 8 

  = x3 + 6a- 12a + 4 + 4

  = x3 + ( 6a2 - 12a + 4 ) + 4

  = x3 + ( 3a - 2 )2 + 4

  = ( x + 3a - 2 + 2 ) ( x2 + 3a + 2 + 2 )

( Mai làm tiếp mấy ý sau '-' muộn rồi ~ )

16 tháng 10 2020

5 , x2 - 2xy + y2 - xz - yz

  = ( x2 - 2xy + y2 ) - ( xz + yz )

  = (  x - y )2 - z ( x + y )

  = ( x - y ) 2 - z ( x - y )

  = ( x - y ) ( x - y - z )

6 , x2 - 4xy + 4y - z2 + 4z - 4t2

 =(  x2 - 4xy + 4y ) - (z- 4z +4 ) . t2

 = ( x - y )2 - ( z - 2  )2 . t2

 = ( x - y - z - 2 ) ( x - y + z - 2 ) t2

7 , 25 - 4x2 - 4xy - y2

  = 25 + ( - 4x2 - 4xy + y2 )

  = 25 + ( 2x - y )2

  = ( 5 + 2x - y ) ( 5 + 2x + y )

8 ,

       x3 + y3 + z3 - 3xyz

    = (x+y)3 - 3xy (x  - y ) + z3 - 3xyz 
    = [ ( x + y)3 + z] - 3xy ( x + y + z ) 
    = ( x + y + z )3 - 3z ( x + y )( x + y + z ) - 3xy ( x - y - z ) 
    = ( x + y + z )[( x + y + z )2 - 3z ( x + y ) - 3xy ] 
    = ( x + y + z )( x2 + y2 + z2 + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) 
    = ( x + y + z)(x2 + y2 + z2 - xy - xz - yz)

a) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)

b) \(-x^2+2xy-y^2=-\left(x-y\right)^2\)

c) \(-4x^4-4x^2=-4x^2\left(x^2-1\right)=-4x^2\left(x-1\right)\left(x+1\right)\)

d) \(\dfrac{1}{9}x^2-\dfrac{2}{3}x+1=\left(\dfrac{1}{3}x-1\right)^2\)

e) \(\left(4x^2+1\right)^2-16x^2=\left(4x^2+1+4x^2\right)\left(4x^2+1-4x^2\right)=8x^2+1\)

f) \(16x^2-\left(x^2+4\right)^2=\left(4x^2+x^2+4\right)\left(4x^2-x^2-4\right)=\left(5x^2+4\right)\left(3x^2-4\right)\)

g) \(x^2+6x^2+12x+8=\left(x+2\right)^3\)

h) \(27x^3-54x^2+36x-8=\left(3x-2\right)^3\)

i) \(x^3-\dfrac{3}{2}x^2+\dfrac{3}{4}x-\dfrac{1}{8}=\left(x-\dfrac{1}{2}\right)^3\)

k) \(0,125x^3-0,75x^2+1,5x-1=\left(0,5-1\right)^3\)

13 tháng 9 2018

thanks nha

Phân tích đa thức thành nhân tử:

a) Ta có: \(3x^2-8xy+5y^2\)

\(=3x^2-3xy-5xy+5y^2\)

\(=3x\left(x-y\right)-5y\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-5y\right)\)

b) Ta có: \(8xy^3+x\left(x-y\right)^3\)

\(=x\left[8y^3-\left(x-y\right)^3\right]\)

\(=x\left[2y-\left(x-y\right)\right]\left[4y^2+2y\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=x\left(2y-x+y\right)\left(4y^2+2xy-2y^2+x^2-2xy+y^2\right)\)

\(=x\left(3y-x\right)\left(3y^2+x^2\right)\)

c) Ta có: \(2x\left(x-3\right)-x+3\)

\(=2x\left(x-3\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(2x-1\right)\)

d) Ta có: \(x^4-4x^3+4x^2\)

\(=x^2\left(x^2-4x+4\right)\)

\(=x^2\cdot\left(x-2\right)^2\)

e) Ta có: \(4x^2+4xy-4z^2+y^2-4z-1\)

\(=\left(4x^2+4xy+y^2\right)-\left(4z^2+4z+1\right)\)

\(=\left(2x+y\right)^2-\left(2z+1\right)^2\)

\(=\left(2x+y-2z-1\right)\left(2x+y+2z+1\right)\)

f) Ta có: \(x^2-2xy+y^2-x+y-6\)

\(=\left(x-y\right)^2-\left(x-y\right)-6\)

\(=\left(x-y\right)^2-3\left(x-y\right)+2\left(x-y\right)-6\)

\(=\left(x-y\right)\left(x-y-3\right)+2\left(x-y-3\right)\)

\(=\left(x-y-3\right)\left(x-y+2\right)\)

g) Ta có: \(x^2\left(x+3\right)^2-\left(x+3\right)^2-\left(x^2-1\right)\)

\(=x^2\left(x^2+6x+9\right)-\left(x^2+6x+9\right)-x^2+1\)

\(=\left(x^2-6x+9\right)\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-6x+9-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2-6x+8\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-4\right)\)

27 tháng 10 2021

helpppppp

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Lời giải:
\(xy^2+2xy+x=32y\)

\(\Leftrightarrow x(y^2+2y+1)=32y\)

\(\Leftrightarrow x(y+1)^2=32y\Rightarrow x=\frac{32y}{(y+1)^2}\)

Ta thấy \((y+1)^2-4y=(y-1)^2\geq 0\Rightarrow (y+1)^2\geq 4y\)

\(\Rightarrow x=\frac{32y}{(y+1)^2}\leq \frac{32y}{4y}=8\)

Từ đây ta xét các TH:

+) Nếu $x$ chẵn thì \(x\in\left\{2;4;6;8\right\}\)

Thử từng giá trị của $x$ ta thu được \((x,y)=(6,3); (8,1)\)

+) Nếu $x$ lẻ thì vì \(x(y+1)^2=32y\vdots 32\Rightarrow (y+1)^2\vdots 32\)

\(y+1\vdots 8\)

\(\Rightarrow 32y=x(y+1)^2\vdots 64\Rightarrow y\vdots 2\) (vô lý vì $y+1$ chẵn thì $y$ phải lẻ)

Vậy $(x,y)=(6,3), (8,1)$

7 tháng 10 2017

\(a,x^2+4xy-21y^2\\ =x^2+7xy-3xy-21y^2\\ =x\left(x+7y\right)-3y\left(x+7y\right)\\ =\left(x+7y\right)\left(x-3y\right)\\ b,5x^2+6xy+y^2\\ =5x^2+5xy+xy+y^2\\ =5x\left(x+y\right)+y\left(x+y\right)\\ =\left(x+y\right)\left(5x+y\right)\\ c.x^2+2xy-15y^2\\ =x^2+5xy-3xy-15y^2\\ =x\left(x+5y\right)-3y\left(x+5y\right)\\ =\left(x+5y\right)\left(x-3y\right)\)

Các câu sau đều tương tự

30 tháng 7 2018

\(a)x^2-6x-y^2+9\)

\(=x^2-6x+9-y^2\)

\(=\left(x-3\right)^2-y^2\)

\(=\left(x-3+y\right)\left(x-3-y\right)\)

30 tháng 7 2018

\(b)\)\(x^2-2xy+y^2-xz+yz\)
\(=\left(x^2-2xy+y^2\right)-\left(xz-yz\right)\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)

Bài 1:

a) Ta có: \(\left(\frac{1}{\left(2x-y\right)^2}+\frac{2}{4x^2-y^2}+\frac{1}{\left(2x+y\right)^2}\right):\frac{16x}{4x^2+4xy+y^2}\)

\(=\left(\frac{\left(2x+y\right)^2}{\left(2x-y\right)^2\cdot\left(2x+y\right)^2}+\frac{2\cdot\left(2x+y\right)\left(2x-y\right)}{\left(2x+y\right)^2\cdot\left(2x-y\right)^2}+\frac{\left(2x-y\right)^2}{\left(2x+y\right)^2\cdot\left(2x-y\right)^2}\right)\cdot\frac{\left(2x+y\right)^2}{16x}\)

\(=\frac{\left(2x+y+2x-y\right)^2}{\left(2x-y\right)^2\cdot\left(2x+y\right)^2}\cdot\frac{\left(2x+y\right)^2}{16x}\)

\(=\frac{\left(4x\right)^2}{\left(2x-y\right)^2}\cdot\frac{1}{16x}\)

\(=\frac{16x^2}{16x\cdot\left(2x-y\right)^2}\)

\(=\frac{x}{\left(2x-y\right)^2}\)

b) Ta có: \(\frac{3}{3x+3}+\frac{10}{5-5x}+\frac{5x-1}{x^2-1}\)

\(=\frac{1}{x+1}-\frac{2}{x-1}+\frac{5x-1}{x^2-1}\)

\(=\frac{x-1}{\left(x+1\right)\left(x-1\right)}-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{5x-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x-1-2\left(x+1\right)+5x-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x-1-2x-2+5x-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{4x-4}{\left(x-1\right)\left(x+1\right)}=\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{4}{x+1}\)

c) Ta có: \(A=\left(x^4-x^2+2x-1\right):\left(x^2+x-1\right)-\left(x^2-x\right)\)

\(=\frac{\left(x^2\right)^2-\left(x^2-2x+1\right)}{x^2+x-1}-x^2+x\)

\(=\frac{\left(x^2\right)^2-\left(x-1\right)^2}{x^2+x-1}-x^2+x\)

\(=\frac{\left(x^2-x+1\right)\left(x^2+x-1\right)}{x^2+x-1}-x^2+x\)

\(=x^2-x+1-x^2+x\)

=1