
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(x^2-3x+xy-3y\)
\(=x\left(x-3\right)+y\left(x-3\right)\)
\(=\left(x+y\right)\left(x-3\right)\)
b) \(x^2+y^2-2xy-25\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y+5\right)\left(x+y-5\right)\)
c) \(4x^2-4xy+y^2=\left(2x-y\right)^2\)
m) \(81-x^2+2xy-y^2\)
\(=9^2-\left(x-y\right)^2\)
\(=\left(9-x+y\right)\left(9+x-y\right)\)
k) \(x^2-xy-x+y\)
\(=x\left(x-y\right)-\left(x-y\right)\)
\(=\left(x-1\right)\left(x-y\right)\)

a , \(-q^3+12q^2x-48qx^2+64x^3\)
\(=-\left(q^3-12q^2x+48qx^2-64x^3\right)\)
\(=\)\(-\left(q-4x\right)^3\)
b , x2 + 2xy - y2 - 9
= - ( x2 - 2xy + y2 ) - 9
= - ( x - y )2 - 9
= ( - x + y - 3 ) ( x - y + 3 )
3 , 1 - m2 + 2mn - n2
= 1 - ( m2 - 2mn + n2 )
= 1 - ( m - n )2
= ( 1 - m + n ) ( 1 + m - n )
4 , x3 - 8 + 6a2 - 12a
= x3 + 6a2 - 12a + 8
= x3 + 6a2 - 12a + 4 + 4
= x3 + ( 6a2 - 12a + 4 ) + 4
= x3 + ( 3a - 2 )2 + 4
= ( x + 3a - 2 + 2 ) ( x2 + 3a + 2 + 2 )
( Mai làm tiếp mấy ý sau '-' muộn rồi ~ )
5 , x2 - 2xy + y2 - xz - yz
= ( x2 - 2xy + y2 ) - ( xz + yz )
= ( x - y )2 - z ( x + y )
= ( x - y ) 2 - z ( x - y )
= ( x - y ) ( x - y - z )
6 , x2 - 4xy + 4y 2 - z2 + 4z - 4t2
=( x2 - 4xy + 4y 2 ) - (z2 - 4z +4 ) . t2
= ( x - y )2 - ( z - 2 )2 . t2
= ( x - y - z - 2 ) ( x - y + z - 2 ) t2
7 , 25 - 4x2 - 4xy - y2
= 25 + ( - 4x2 - 4xy + y2 )
= 25 + ( 2x - y )2
= ( 5 + 2x - y ) ( 5 + 2x + y )
8 ,
x3 + y3 + z3 - 3xyz
= (x+y)3 - 3xy (x - y ) + z3 - 3xyz
= [ ( x + y)3 + z3 ] - 3xy ( x + y + z )
= ( x + y + z )3 - 3z ( x + y )( x + y + z ) - 3xy ( x - y - z )
= ( x + y + z )[( x + y + z )2 - 3z ( x + y ) - 3xy ]
= ( x + y + z )( x2 + y2 + z2 + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= ( x + y + z)(x2 + y2 + z2 - xy - xz - yz)

a) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
b) \(-x^2+2xy-y^2=-\left(x-y\right)^2\)
c) \(-4x^4-4x^2=-4x^2\left(x^2-1\right)=-4x^2\left(x-1\right)\left(x+1\right)\)
d) \(\dfrac{1}{9}x^2-\dfrac{2}{3}x+1=\left(\dfrac{1}{3}x-1\right)^2\)
e) \(\left(4x^2+1\right)^2-16x^2=\left(4x^2+1+4x^2\right)\left(4x^2+1-4x^2\right)=8x^2+1\)
f) \(16x^2-\left(x^2+4\right)^2=\left(4x^2+x^2+4\right)\left(4x^2-x^2-4\right)=\left(5x^2+4\right)\left(3x^2-4\right)\)
g) \(x^2+6x^2+12x+8=\left(x+2\right)^3\)
h) \(27x^3-54x^2+36x-8=\left(3x-2\right)^3\)
i) \(x^3-\dfrac{3}{2}x^2+\dfrac{3}{4}x-\dfrac{1}{8}=\left(x-\dfrac{1}{2}\right)^3\)
k) \(0,125x^3-0,75x^2+1,5x-1=\left(0,5-1\right)^3\)

Phân tích đa thức thành nhân tử:
a) Ta có: \(3x^2-8xy+5y^2\)
\(=3x^2-3xy-5xy+5y^2\)
\(=3x\left(x-y\right)-5y\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5y\right)\)
b) Ta có: \(8xy^3+x\left(x-y\right)^3\)
\(=x\left[8y^3-\left(x-y\right)^3\right]\)
\(=x\left[2y-\left(x-y\right)\right]\left[4y^2+2y\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=x\left(2y-x+y\right)\left(4y^2+2xy-2y^2+x^2-2xy+y^2\right)\)
\(=x\left(3y-x\right)\left(3y^2+x^2\right)\)
c) Ta có: \(2x\left(x-3\right)-x+3\)
\(=2x\left(x-3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(2x-1\right)\)
d) Ta có: \(x^4-4x^3+4x^2\)
\(=x^2\left(x^2-4x+4\right)\)
\(=x^2\cdot\left(x-2\right)^2\)
e) Ta có: \(4x^2+4xy-4z^2+y^2-4z-1\)
\(=\left(4x^2+4xy+y^2\right)-\left(4z^2+4z+1\right)\)
\(=\left(2x+y\right)^2-\left(2z+1\right)^2\)
\(=\left(2x+y-2z-1\right)\left(2x+y+2z+1\right)\)
f) Ta có: \(x^2-2xy+y^2-x+y-6\)
\(=\left(x-y\right)^2-\left(x-y\right)-6\)
\(=\left(x-y\right)^2-3\left(x-y\right)+2\left(x-y\right)-6\)
\(=\left(x-y\right)\left(x-y-3\right)+2\left(x-y-3\right)\)
\(=\left(x-y-3\right)\left(x-y+2\right)\)
g) Ta có: \(x^2\left(x+3\right)^2-\left(x+3\right)^2-\left(x^2-1\right)\)
\(=x^2\left(x^2+6x+9\right)-\left(x^2+6x+9\right)-x^2+1\)
\(=\left(x^2-6x+9\right)\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-6x+9-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2-6x+8\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-4\right)\)

Lời giải:
\(xy^2+2xy+x=32y\)
\(\Leftrightarrow x(y^2+2y+1)=32y\)
\(\Leftrightarrow x(y+1)^2=32y\Rightarrow x=\frac{32y}{(y+1)^2}\)
Ta thấy \((y+1)^2-4y=(y-1)^2\geq 0\Rightarrow (y+1)^2\geq 4y\)
\(\Rightarrow x=\frac{32y}{(y+1)^2}\leq \frac{32y}{4y}=8\)
Từ đây ta xét các TH:
+) Nếu $x$ chẵn thì \(x\in\left\{2;4;6;8\right\}\)
Thử từng giá trị của $x$ ta thu được \((x,y)=(6,3); (8,1)\)
+) Nếu $x$ lẻ thì vì \(x(y+1)^2=32y\vdots 32\Rightarrow (y+1)^2\vdots 32\)
\(y+1\vdots 8\)
\(\Rightarrow 32y=x(y+1)^2\vdots 64\Rightarrow y\vdots 2\) (vô lý vì $y+1$ chẵn thì $y$ phải lẻ)
Vậy $(x,y)=(6,3), (8,1)$

\(a,x^2+4xy-21y^2\\ =x^2+7xy-3xy-21y^2\\ =x\left(x+7y\right)-3y\left(x+7y\right)\\ =\left(x+7y\right)\left(x-3y\right)\\ b,5x^2+6xy+y^2\\ =5x^2+5xy+xy+y^2\\ =5x\left(x+y\right)+y\left(x+y\right)\\ =\left(x+y\right)\left(5x+y\right)\\ c.x^2+2xy-15y^2\\ =x^2+5xy-3xy-15y^2\\ =x\left(x+5y\right)-3y\left(x+5y\right)\\ =\left(x+5y\right)\left(x-3y\right)\)
Các câu sau đều tương tự

\(a)x^2-6x-y^2+9\)
\(=x^2-6x+9-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3+y\right)\left(x-3-y\right)\)
\(b)\)\(x^2-2xy+y^2-xz+yz\)
\(=\left(x^2-2xy+y^2\right)-\left(xz-yz\right)\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)

Bài 1:
a) Ta có: \(\left(\frac{1}{\left(2x-y\right)^2}+\frac{2}{4x^2-y^2}+\frac{1}{\left(2x+y\right)^2}\right):\frac{16x}{4x^2+4xy+y^2}\)
\(=\left(\frac{\left(2x+y\right)^2}{\left(2x-y\right)^2\cdot\left(2x+y\right)^2}+\frac{2\cdot\left(2x+y\right)\left(2x-y\right)}{\left(2x+y\right)^2\cdot\left(2x-y\right)^2}+\frac{\left(2x-y\right)^2}{\left(2x+y\right)^2\cdot\left(2x-y\right)^2}\right)\cdot\frac{\left(2x+y\right)^2}{16x}\)
\(=\frac{\left(2x+y+2x-y\right)^2}{\left(2x-y\right)^2\cdot\left(2x+y\right)^2}\cdot\frac{\left(2x+y\right)^2}{16x}\)
\(=\frac{\left(4x\right)^2}{\left(2x-y\right)^2}\cdot\frac{1}{16x}\)
\(=\frac{16x^2}{16x\cdot\left(2x-y\right)^2}\)
\(=\frac{x}{\left(2x-y\right)^2}\)
b) Ta có: \(\frac{3}{3x+3}+\frac{10}{5-5x}+\frac{5x-1}{x^2-1}\)
\(=\frac{1}{x+1}-\frac{2}{x-1}+\frac{5x-1}{x^2-1}\)
\(=\frac{x-1}{\left(x+1\right)\left(x-1\right)}-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{5x-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x-1-2\left(x+1\right)+5x-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x-1-2x-2+5x-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{4x-4}{\left(x-1\right)\left(x+1\right)}=\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{4}{x+1}\)
c) Ta có: \(A=\left(x^4-x^2+2x-1\right):\left(x^2+x-1\right)-\left(x^2-x\right)\)
\(=\frac{\left(x^2\right)^2-\left(x^2-2x+1\right)}{x^2+x-1}-x^2+x\)
\(=\frac{\left(x^2\right)^2-\left(x-1\right)^2}{x^2+x-1}-x^2+x\)
\(=\frac{\left(x^2-x+1\right)\left(x^2+x-1\right)}{x^2+x-1}-x^2+x\)
\(=x^2-x+1-x^2+x\)
=1
khu
khum bt