\(\left(2x+y\right)^3-2\left(y-x\right)^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S
18 tháng 7

câu 1: \(\left(2x+y\right)^3-2\left(y-x\right)^3\)

\(=8x^3+12x^2y+6xy^2+y^3-\left(2y^3-6y^2x+6x^2y-2x^3\right)\)

\(=8x^3+12x^2y+6xy^2+y^3-2y^3+6y^2x-6x^2y+2x^3\)

\(=10x^3+\left(12x^2y-6x^2y\right)+\left(6xy^2+6y^2x\right)+\left(y^3-2y^3\right)\)

\(=10x^3+6x^2y+12xy^2-y^3\)

câu 2: \(\left(2x-3\right)^3-2x\left(2x+1\right)^2\)

\(=8x^3-36x^2+54x-27-\left(8x^3+8x^2+2x\right)\)

\(=\left(8x^3-8x^3\right)+\left(-36x^2-8x^2\right)+\left(54x-2x\right)-27\)

\(=-44x^2+52x-27\)

câu 3: \(\left(3x-1\right)^3-27x^2\left(x+1\right)\)

\(=27x^3-27x^2+9x-1-\left(27x^3+27x^2\right)\)

\(=\left(27x^3-27x^3\right)+\left(-27x^2-27x^2\right)+9x-1\)

\(=-54x^2+9x-1\)

câu 4: \(\left(2x+1\right)^3-8x\left(x-1\right)^2\)

\(=8x^3+12x^2+6x+1-\left(8x^3-16x^2+8x\right)\)

\(=28x^2-2x+1\)

30 tháng 3 2018

Hỏi đáp Toán

30 tháng 3 2018

Dài quá c ơi :<

3 tháng 3 2020

\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)

\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)

\(\Leftrightarrow4x+4x>-1\)

\(\Leftrightarrow8x>-1\)

\(\Leftrightarrow x>-\frac{1}{8}\)

\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)

\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-6x^2< 1+3\)

\(\Leftrightarrow-2x^2< 4\)

\(\Leftrightarrow x^2>2\)

\(\Leftrightarrow x>\pm\sqrt{2}\)

8 tháng 1 2022

mk mới lớp 5 nên ko bt

25 tháng 7 2020

a) y(x2-y2)(x2+y2)-y(x4-y4)=y[(x2)2-(y2)2] - y(x4-y4)=y(x4-y4)-y(x4-y4)=0

vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)

b) \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)

\(=\left[\left(2x\right)^3+\left(\frac{1}{3}\right)^3\right]-\left(8x^3-\frac{1}{27}\right)=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}=\frac{1}{54}\)

vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)

25 tháng 7 2020

c) (x - 1)^3 - (x - 1)(x^2 + x + 1) - 3(1 - x)x

= (x - 1)(x^2 + x + 1) - (x - 1)(x^2 + x + 1) - 3x(1 - x)

= x^3 - 3x^2 + 3x - 1 - x^3 + 1 - 3x + 3x^2

= 0 (đpcm)

31 tháng 8 2017

a) \(A=\dfrac{\left(-2\right)^5}{\left(-2\right)^3}=\left(-2\right)^{5-3}=\left(-2\right)^2=4\)

b) \(y\ne0:B=\dfrac{\left(-y\right)^7}{\left(-y\right)^3}=\left(-y\right)^{7-3}=\left(-y\right)^4=y^4\)

c) \(x\ne0:C=\dfrac{\left(x\right)^{12}}{\left(-x\right)^{10}}=\left(x\right)^{12-10}=\left(x\right)^2=x^4\)

d) \(x\ne0:D=\dfrac{2x^6}{\left(2x\right)^3}=\dfrac{2x^6}{8x^3}=\dfrac{1}{4}\left(x\right)^{6-3}=\dfrac{1}{4}\left(x\right)^3\)

e) \(x\ne0:E=\dfrac{\left(-3x\right)^5}{\left(-3x\right)^2}=\left(-3x\right)^{5-2}=\left(-3x\right)^3=-27x^3\)

f) \(x,y\ne0:F=\dfrac{\left(xy^2\right)^4}{\left(xy^2\right)^2}=\left(xy^2\right)^{4-2}=\left(xy^2\right)^2=x^2y^4\)

i) \(x\ne-2:I=\dfrac{\left(x+2\right)^9}{\left(x+2\right)^6}=\left(x+2\right)^{9-6}=\left(x+2\right)^3\)

30 tháng 8 2017

A),(-2)5:(-2)3=(-2)2=4

B) (-y)7 :(-y)3=y4

29 tháng 9 2018

\(\left(x^2-1\right)\left(x+2\right)-\left(x-4\right)\left(x^2+4x+16\right)\)

\(=x^3+2x^2-x-2-\left(x^3-4^3\right)\)

\(=x^3+2x^2-x-2-x^3+64\)

\(=2x^2-x+62\)

\(2x\left(3x-2\right)^2\)

\(=2x\left(9x^2-12x+4\right)\)

\(=18x^3-24x^2+8x\)

\(\left(x-3\right)\left(x^2-3x+9\right)\)

\(=x^3-3x^2+9x-3x^2+9x-27\)

\(=x^3-3x^2+18x-27\)

29 tháng 9 2018

\(\left(x^2-1\right)\left(x+2\right)-\left(x-4\right)\left(x^2+4x+16\right)\)

\(=\left(x^2-1^2\right)\left(x+2\right)-x^3-4^3\)

\(=\left(x+1\right)\left(x-1\right)\left(x+2\right)-x^3-64\)

19 tháng 8 2016

1/ (x2 - 2)(x+ 2x + 2)

19 tháng 8 2016

2/ x- (x+ 2)= (x - x- 2)(x + x​+ 2)