Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(x-4\right)^2-\left(x+4\right)^2-16\left(x-2\right)\)
\(=x^2-8x+16-x^2-8x-16-16x+32\)
\(=-32x+32\)
Biểu thức phụ thuộc vào giá trị của biến

Bài làm :
\(x.\left(2x^3+x+2\right)-2x^2.\left(x^2+1\right)+x^2-2x+1\)
\(=2x^4+x^2+2x-2x^4-2x^2+x^2-2x+1\)
\(=\left(2x^4-2x^4\right)+\left(x^2-2x^2+x^2\right)+\left(2x-2x\right)+1\)
\(=1\)
Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến x .
Học tốt

a) y(x2-y2)(x2+y2)-y(x4-y4)=y[(x2)2-(y2)2] - y(x4-y4)=y(x4-y4)-y(x4-y4)=0
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
b) \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
\(=\left[\left(2x\right)^3+\left(\frac{1}{3}\right)^3\right]-\left(8x^3-\frac{1}{27}\right)=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}=\frac{1}{54}\)
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
c) (x - 1)^3 - (x - 1)(x^2 + x + 1) - 3(1 - x)x
= (x - 1)(x^2 + x + 1) - (x - 1)(x^2 + x + 1) - 3x(1 - x)
= x^3 - 3x^2 + 3x - 1 - x^3 + 1 - 3x + 3x^2
= 0 (đpcm)

đk: x \(\ge\)0
A = \(\left(4\sqrt{x}-3\right)^2-\left(2\sqrt{x}+1\right)\left(8\sqrt{x}-3\right)+13\left(2\sqrt{x}-1\right)\)
A = \(16x-24\sqrt{x}+9-16x-2\sqrt{x}+3+26\sqrt{x}-1\)
A = 11
=> giá trị A ko phụ thuộc vào giá trị biến x

1/ Ta có : \(P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2
2/ Ta có : \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)
3/ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow ab+bc+ac=-\frac{1}{2}\) \(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)(vì a+b+c=0)
Ta có : \(a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}\)

a: \(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)
=-65
b \(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)
=27
c: \(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
d: \(=x^3-3x^2+3x-1-x^3+1-3x\left(1-x\right)\)
\(=-3x^2+3x-3x+3x^2=0\)

a) \(P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(P=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x\)
\(P=0\)
=> P không phụ thuộc vào giá trị của biến x
b) \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(Q=x^3-2x^2+2x-1-x^3-2x^2-2x-1+6x^2-6\)
\(Q=2x^2-8\)
=> Q phụ thuộc vào giá trị của biến x
\(P=\left(x+2+x-2\right)\left(x^2+4x+4-x^2+4+x^2-4x+4\right)-2x^3-24x\)
\(=2x.\left(x^2+16\right)-2x^3-24x\)
\(=2x^3+32x-2x^3-24x\)
=8x
Ta có: \(A=\left(2x-1\right)^3+2\left(x+2\right)^3-10x\left(x-2\right)\left(x+2\right)-70x\)
\(=8x^3-12x^2+6x-1+2\left(x^3+6x^2+12x+8\right)-10x\left(x^2-4\right)-70x\)
\(=8x^3-12x^2-64x-1+2x^3+12x^2+24x+16-10x^3+40x\)
=15
=>A không phụ thuộc vào biến
(2x-1)³+2(x+2)³-10x(x-2)(x+2)-70x = 15 (Khai triển hết ra là làm được)