K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7

Đề bài tóm tắt:

  • Tam giác \(A B C\)
  • Trung tuyến \(A D\), với \(D\) là trung điểm của \(B C\)
  • \(M\) là điểm bất kỳ nằm trên đoạn \(A B\)
  • \(B M\) cắt \(A C\) tại \(E\)
  • \(C M\) cắt \(A B\) tại \(F\)
  • Gọi \(N\) là điểm trên tia đối của \(D M\) sao cho \(D N = D M\)

Ý A: Chứng minh \(E F \parallel B C\)

Phân tích:

  • Ta có các điểm:
    \(E = B M \cap A C\),
    \(F = C M \cap A B\),
    và cần chứng minh: \(E F \parallel B C\)

Cách làm: Sử dụng định lý Menelaus hoặc đồng dạng

Tuy nhiên, cách nhanh hơn là dùng phép đối xứng trục hoặc phép tịnh tiến qua trung điểm nếu có các điều kiện thuận lợi.

Nhưng ở đây, ta dùng cách hình học thuần túy:

Dựng hình và biến đổi:

Gọi \(D\) là trung điểm của \(B C\),
Gọi \(N\) là điểm đối xứng với \(M\) qua \(D \Rightarrow D N = D M\) (theo đề)

Do đó:
\(D\) là trung điểm của \(M N\)
⇒ Tứ giác \(B M N C\) là hình bình hành (vì \(D\) là trung điểm của cả 2 đường chéo)

Trong hình bình hành, đường chéo cắt nhau tại trung điểm mỗi đường → từ đó suy ra các cặp cạnh đối song song

\(\Rightarrow E F \&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{giao}\&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp}; B M \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; C M \Rightarrow \text{EF}\&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{giao}\&\text{nbsp};\text{tuy} \overset{ˊ}{\hat{\text{e}}} \text{n}\&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp};\text{2}\&\text{nbsp};đườ\text{ng}\&\text{nbsp};\text{trong}\&\text{nbsp};\text{h} \overset{ˋ}{\imath} \text{nh}\&\text{nbsp};\text{b} \overset{ˋ}{\imath} \text{nh}\&\text{nbsp};\text{h} \overset{ˋ}{\text{a}} \text{nh}\&\text{nbsp};\text{BMNC} \Rightarrow \boxed{E F \parallel B C}\)

Kết luận ý A:

\(\boxed{E F \parallel B C}\)


Ý B: Gọi \(I = A M \cap A F\), chứng minh \(I\) là trung điểm của \(E F\)

Dựng hình:

  • \(M \in A B\)
  • \(B M \cap A C = E\)
  • \(C M \cap A B = F\)
  • \(A M \cap A F = I\)

Ta cần chứng minh \(I\) là trung điểm của đoạn \(E F\).

Cách làm: Sử dụng định lý Desargues đảo hoặc hình học thuần túy (biến đổi đồng dạng)

Chìa khóa: Do \(E F \parallel B C\)\(D\) là trung điểm của \(B C\), nên đoạn thẳng đi qua \(A\) và cắt \(E F\) tại trung điểm khi và chỉ khi nó là đường trung tuyến của tam giác \(A E F\)

Tuy nhiên, cách đơn giản hơn là dùng tính chất cầu hình hoặc biến đổi hình học:

Lập luận:

  • Gọi \(I = A M \cap A F\)
  • Do \(E F \parallel B C\), \(D\) là trung điểm \(B C\)
  • \(D M\) cắt \(E F\) tại trung điểm \(G\) (gọi là \(G = D M \cap E F\))
  • \(D N = D M \Rightarrow D\) là trung điểm của \(M N\)
  • Từ đó, các điểm \(B , M , N , C\) tạo thành hình bình hành → đối xứng

Do đó, đoạn thẳng \(A M\) cắt \(E F\) tại điểm đối xứng, chia \(E F\) thành hai đoạn bằng nhau.

Vậy:

\(\boxed{I \&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{trung}\&\text{nbsp};đ\text{i}ể\text{m}\&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp}; E F}\)


Kết luận chung:

A. \(\boxed{E F \parallel B C}\)

B. \(\boxed{I \&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{trung}\&\text{nbsp};đ\text{i}ể\text{m}\&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp}; E F}\)

Câu b
Từ N kể đường thẳng song song với BC cắt đường thẳng AB tại K => KBCN là hình thang (*) 
Lại có góc BKN = ABC ( đồng vị), CNK = ACB (đồng vị) và ABC = ACB nên BKN = CNK (**) 
từ (*) và (**) => KBCN là hình thang cân => BK = CN = BM. 
=> AK = AN nên tam giác AKN cân tại A => AO là đường trung trực của KN => OK = ON (4) 
vì OI là trung trực của MN nên OM = ON (5) 
từ (4) và (5) => OM = OK => tam giác OMK cân tại O lại có BM = BK (cmt) nên OB v^g góc với AB. 
Tam giác ABO và Tam giác ACO có: AB = ÃC, BAO = CAO (gt) , AO chung nên tam giác ABO = tam giác ACO (c,g,c) => ACO = ABO = 90độ. hay OC vuông góc với AC.

11 tháng 6 2019

Cậu tự vẽ hình nhé

a, kẻ MK vuông BC, NG vuông BC

Tam g ABC cân => g ABC= g ACB 

Lại có g ACB = g GCN (dd)

=> g GCN = g ABC=g MBK

Xét tg MBK và tg NCG 

g MKB= g NGC =90° 

g MBK = g NCG (cmt)

MB= CN(gt)

=> tg MBK= tg NCG ( ch-gn)

=> MK=NG (2 cạnh tương ứng)

Vì MK vuông BC, NG vuông BC => NG// MK 

=> g GNM = g KMN ( so le trong )

Xét tg MKD VÀ TG NGD

g MKD = g DGN = 90°

g KMD = gDNG ( cmt)

Mk= GN (cmt)

=> tg MKD = tg NGD (_cgv-gn)

=> MD= ND (2 ctu)

=> D là td MN ( dpcm)

11 tháng 6 2019

Xét tam giác cân ABC , AH là đường cao => AH là trung trực 

Lại có E thuộc AH => EC= EB 

Xét tg ABE và tg ACE

AB=AC (tg ABC cân)

BE= EC (cmt)

AE cạnh chung 

=> tg ABE = tg ACE (ccc)

=> g ABE = g ACE ( 2 góc tương ứng)(1)

Lại có DE là trung trực MN => ME = NE

Xét tg MBE và tg NCE

MB = NC ( gt)

ME = NE (cmt)

BE = CE (cmt)

=> tg MBE = tg NCE (ccc)

=> g ECN = g EBM (2 góc t u ) (2)

Từ 1), 2) => g ECA = g ECN 

Lại có 2 góc này bù nhau

=>g ACE= 90°= g ABE

Xét tg ABE vuông

+ theo đl pytago:

=> AE = √( ab2+bE2)= √( 62+4,52)= 7,5 (cmcm)

+ BH là đcao, theo hệ thức lượng trong tg vuông

=>+ AB2= AH.AE => AH= 62:7,5=4,8 (cmcm)

+ 1/(BH2)= 1/(AB2)+1/(BE2) => BH = √(1:( (1/62)+(1/4,52))= 3,6(ccmcm)

=> BC= 3,6.2= 7,2 (cm)

=> dt tg ABC có đcao AH là 7,2.4,8.1/2= 28,08(cm2)

Vậy S tg ABC = 28,08 cm2

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

3 tháng 2 2019

A B C M D N E F G x y

Lấy điểm G đối xứng với E qua M. Khi đó, MN là đường tron bình của \(\Delta\)EFG => MN // FG (1)

Xét (O) có 2 cát tuyến CFA và CMD => \(\frac{CA}{CD}=\frac{CM}{CF}\) (Do \(\Delta\)CMF ~ \(\Delta\)CAD)

Áp dụng ĐL đường phân giác trong tam giác ta có: \(\frac{AB}{AC}=\frac{DB}{DC}\Rightarrow\frac{CA}{CD}=\frac{AB}{BD}\)

Suy ra: \(\frac{CM}{CF}=\frac{AB}{BD}=\frac{BM}{BE}\) (Vì \(\Delta\)ABD ~ \(\Delta\)MBE). Mà CM=BM nên BE = CF

Dễ thấy: Tứ giác BECG là hình bình hành => BE = CG và BE//CG. Do đó: CF = CG => \(\Delta\)GFC cân tại C

=> ^CFG = (180- ^GCF)/2 = (1800 - ^BAC)/2 (Vì BE//CG) = ^DAx = ^CAy => FG // AD (2 góc đồng vị bằng nhau) (2)

Từ (1) và (2) => MN // AD (đpcm).

P/S: Đường tròn (ADM) không cắt tia đối tia AC cũng được nhé bn. Trong trường hợp nó cắt tia đối thì c/m tương tự.

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.b/ CM: EM = EFc/ Gọi I là tâm đường tròn ngoại tiếp...
Đọc tiếp

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.

a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.

b/ CM: EM = EF

c/ Gọi I là tâm đường tròn ngoại tiếp tam giác DMF. CM góc ABI có số đo không đổi khi M di động trên cung \(\widebat{BD}\)

Bài 2: Cho tam giác đều ABC nội tiếp trong đường tròn (O). Một đường thẳng d thay đổi đi qua A, cắt (O) tại điểm thứ hai là E, cắt hai tiêp tuyến kẻ từ B và C của đường tròn (O) lần lượt tại M và N sao cho A,M,N nằm ở cùng nửa mặt phẳng bờ BC. Gọi giao điểm của hai đường thẳng MC và BN tại F. CMR:

a/ Hai tam giác MBA và CAN dồng dạng và tích MB.CN không đổi.

b/ Tứ giác BMEF nội tiếp trong một đường tròn.

c/ Đường thẳng EF luôn đi qua một điểm cố định khi (d) thay đổi.

0