K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chúng ta sẽ giải phương trình:

\(\left(\right. x^{2} - x \left.\right)^{2} - \left(\right. x - 1 \left.\right)^{2} = \left(\right. x + 1 \left.\right) \left(\right. 3 x - 5 \left.\right)\)

Bước 1: Phân tích và mở rộng các biểu thức.


  • Nhân \(\left(\right. x^{2} - x \left.\right)^{2}\):

\(\left(\right. x^{2} - x \left.\right)^{2} = \left(\right. x^{2} \left.\right)^{2} - 2 \cdot x^{2} \cdot x + x^{2} = x^{4} - 2 x^{3} + x^{2}\)

Tuy nhiên, chúng ta có thể giữ lại dạng này để dễ làm hơn sau này.

  • Nhân \(\left(\right. x - 1 \left.\right)^{2}\):

\(\left(\right. x - 1 \left.\right)^{2} = x^{2} - 2 x + 1\)

  • Nhân \(\left(\right. x + 1 \left.\right) \left(\right. 3 x - 5 \left.\right)\):

\(\left(\right. x + 1 \left.\right) \left(\right. 3 x - 5 \left.\right) = x \cdot 3 x + x \cdot \left(\right. - 5 \left.\right) + 1 \cdot 3 x + 1 \cdot \left(\right. - 5 \left.\right) = 3 x^{2} - 5 x + 3 x - 5 = 3 x^{2} - 2 x - 5\)


Bước 2: Đặt phương trình ban đầu:

\(\left(\right. x^{2} - x \left.\right)^{2} - \left(\right. x - 1 \left.\right)^{2} = \left(\right. x + 1 \left.\right) \left(\right. 3 x - 5 \left.\right)\)

Thay các biểu thức đã tính:

\(\left(\right. x^{2} - x \left.\right)^{2} - \left(\right. x^{2} - 2 x + 1 \left.\right) = 3 x^{2} - 2 x - 5\)


Bước 3: Rút gọn phía trái:

Triển khai:

\(x^{4} - 2 x^{3} + x^{2} - x^{2} + 2 x - 1 = 3 x^{2} - 2 x - 5\)

dễ thấy:

\(x^{4} - 2 x^{3} + \left(\right. x^{2} - x^{2} \left.\right) + 2 x - 1 = 3 x^{2} - 2 x - 5\)

rút gọn:

\(x^{4} - 2 x^{3} + 2 x - 1 = 3 x^{2} - 2 x - 5\)


Bước 4: Chuyển tất cả về một phía:

\(x^{4} - 2 x^{3} + 2 x - 1 - 3 x^{2} + 2 x + 5 = 0\)

Rút gọn:

\(x^{4} - 2 x^{3} - 3 x^{2} + \left(\right. 2 x + 2 x \left.\right) + \left(\right. - 1 + 5 \left.\right) = 0\)

\(x^{4} - 2 x^{3} - 3 x^{2} + 4 x + 4 = 0\)


Bước 5: Giải phương trình bậc 4:

Phương trình:

\(x^{4} - 2 x^{3} - 3 x^{2} + 4 x + 4 = 0\)


Bước 6: Tìm nhân tử hoặc các nghiệm thử.

Thử nghiệm nghiệm bằng các số dễ:

  • Thử \(x = 1\):

\(1 - 2 - 3 + 4 + 4 = 4 \neq 0\)

  • Thử \(x = - 1\):

\(1 + 2 - 3 - 4 + 4 = 0\)

Vậy x = -1 là nghiệm.


Bước 7: Phân tích chia đa thức:

Chia theo (x + 1):

Thực hiện chia đa thức:

\(x^{4} - 2 x^{3} - 3 x^{2} + 4 x + 4\) chia cho (x + 1).

Thực hiện chia:

  • Đặt y = x + 1, thì đa thức trở thành tỉ số chia.

Hoặc, thực hiện chia đa thức trực tiếp:

Dùng phân thức:

(use polynomial long division hoặc synthetic division).

Sử dụng synthetic division với -1:

Coefficients: 1 -2 -3 4 4

-1 | 1 -2 -3 4 4

| -1 3 0 -4


1 -3 0 4 0

Kết quả:

  • Hệ số của thương là: \(1 x^{3} - 3 x^{2} + 0 x + 4 = x^{3} - 3 x^{2} + 4\)
  • Nhận xét: Phương trình còn lại là:

\(x^{3} - 3 x^{2} + 4 = 0\)


Bước 8: Giải phương trình cubic:

\(x^{3} - 3 x^{2} + 4 = 0\)

Thử nghiệm nghiệm:

  • Ước lượng trên khoảng:

Thử x = 1:

\(1 - 3 + 4 = 2 \neq 0\)

x = 2:

\(8 - 12 + 4 = 0\)

Vậy x = 2 là nghiệm.


Bước 9: Phân tích chia đa thức:

Chia đa thức ban đầu cho (x - 2):

Coefficients: 1 -3 0 4

  • Synthetic division with 2:

2 | 1 -3 0 4

| 2 -2 -4


1 -1 -2 0

Kết quả:

Thương là: \(x^{2} - x - 2\)

Nghiệm của:

\(x^{2} - x - 2 = 0\)

sử dụng công thức:

\(x = \frac{1 \pm \sqrt{1 - 4 \times \left(\right. - 2 \left.\right)}}{2} = \frac{1 \pm \sqrt{1 + 8}}{2} = \frac{1 \pm \sqrt{9}}{2}\)

\(x = \frac{1 \pm 3}{2}\)

Vậy có hai nghiệm:

  • \(x = \frac{1 + 3}{2} = 2\)
  • \(x = \frac{1 - 3}{2} = - 1\)

Bước 10: Tập nghiệm tổng quát:

  • Đã tìm nghiệm từ phép chia là: \(x = - 1\)\(x = 2\), và nghiệm từ nghiệm cubic ban đầu:
    • \(x = 2\) (đã có)
    • \(x = - 1\) (đã có)
    • và nghiệm tổng quát là \(x = 2\)\(x = - 1\) (truyền thống)

Lưu ý: Nghiệm \(x = 2\) xuất hiện hai lần (đáp ứng nghiệm nhân), và nghiệm \(x = - 1\) cũng xuất hiện hai lần.


Kết luận:

Nghiệm của phương trình là:

\(\boxed{x = - 1 (\text{nhi} \overset{ˋ}{\hat{\text{e}}} \text{u}\&\text{nbsp};\text{l} \overset{ˋ}{\hat{\text{a}}} \text{n}) ; x = 2 (\text{nhi} \overset{ˋ}{\hat{\text{e}}} \text{u}\&\text{nbsp};\text{l} \overset{ˋ}{\hat{\text{a}}} \text{n})}\)

Trong tập nghiệm, các nghiệm chính là:

\(\boxed{x = - 1 , x = 2}\)


tick được không

20 tháng 11 2019

x,y là số nguyên tố đúng ko?

20 tháng 11 2019

ĐK \(-1\le x\le7\)

Ta có \(VT=x^2-6x+13=\left(x-3\right)^2+4\ge4\)(1)

\(2VP=\sqrt{4\left(7-x\right)}+\sqrt{4\left(x+1\right)}\le\frac{4+7-x+4+1+x}{2}=8\)

=> \(VP\le4\)(2)

Từ (1);(2)

=> đẳng thức xảy ra khi x=3(tm ĐKXĐ)

Vậy x=3

15 tháng 3 2020

mình làm cho câu dưới nha

\(x+y+xy+2=x^2+y^2\)

\(=>x^2+y^2-x-y-xy=2\)

=>\(2x^2+2y^2-2x-2y-2xy=4\\\)( chỗ này nhân mõi zế zs 2 á)

=>\(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=4\)

ta lại có\(4=0+1+3=tgtựra\)

mình nghĩ thế

11 tháng 9 2018

mn ơi giúp em vs ạ !!!

11 tháng 9 2018

giúp e vs

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

28 tháng 8 2017

1/ \(x^3+2=3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ

\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)

Lấy trên - dưới ta được

\(x^3-a^3+3x-3a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{3x-2}\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

26 tháng 8 2018

1,

\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)

\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)

\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)

\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)

\(=\frac{2\sqrt{h-1}}{h-2}\)

Thay \(h=3\)vào D ta có:

\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)

Vậy với \(h=3\)thì \(D=2\sqrt{2}\)

2,

a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)

Vậy PT có nghiệm là \(x=2\)

b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))

\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)

\(\Leftrightarrow0=-3\)(vô lí)

Vậy PT đã cho vô nghiệm.

17 tháng 10 2016

Điều kiện xác định

\(\hept{\begin{cases}2-x^2+2x\ge0\\-x^2-6x-8\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-0,73\le x\le2,73\\-4\le x\le-2\end{cases}}\)

=> Tập xác định là tập rỗng

Vậy pt vô nghiệm

6 tháng 8 2017

1)x^4+x^2-6x+1=0>>>x^4+4x^2+4-3x^2-6x-3=0>>>(x^2+2)^2=3(x-1)^2.

>>Sau đó giải bt.

2)Đặt x^2-x+1=a;x+1=b thì:x^3+1=ab.

Pt:2a+5b^2+14ab=0(tự giải nha)

15 tháng 8 2020

Bài 2 :

b) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\) (1)

ĐKXĐ : \(x\ge1\)

Pt(1) tương đương :

\(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=2\) (*)

Xét \(x\ge2\Rightarrow\sqrt{x-1}-1\ge0\)

\(\Rightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\)

Khi đó pt (*) trở thành :

\(\sqrt{x-1}+1+\sqrt{x-1}-1=2\)

\(\Leftrightarrow2\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\) ( Thỏa mãn )

Xét \(1\le x< 2\) thì \(x\ge2\Rightarrow\sqrt{x-1}-1< 0\)

Nên : \(\left|\sqrt{x-1}-1\right|=1-\sqrt{x-1}\). Khi đó pt (*) trở thành :

\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

\(\Leftrightarrow2=2\) ( Luôn đúng )

Vậy tập nghiệm của phương trình đã cho là \(S=\left\{x|1\le x\le2\right\}\)

15 tháng 8 2020

Bài 1 : 

a) ĐKXĐ : \(-1\le a\le1\)

Ta có : \(Q=\left(\frac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\frac{3}{\sqrt{1-a^2}}\right)\)

\(=\left(\frac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right)\cdot\frac{\sqrt{1-a^2}}{3}\)

\(=\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}\cdot\frac{\sqrt{\left(1-a\right)\left(1+a\right)}}{3}\)

\(=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\)

Vậy \(Q=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\) với \(-1\le a\le1\)

b) Với \(a=\frac{\sqrt{3}}{2}\) thỏa mãn ĐKXĐ \(-1\le a\le1\)nên ta có :

\(\hept{\begin{cases}1-a=1-\frac{\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{\left(\sqrt{3}-1\right)^2}{2^2}\\1-a^2=1-\frac{3}{4}=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\sqrt{1-a}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2^2}}=\left|\frac{\sqrt{3}-1}{2}\right|=\frac{\sqrt{3}-1}{2}\\\sqrt{1-a^2}=\frac{1}{2}\end{cases}}\)

Do đó : \(Q=\frac{\left(3+\frac{1}{2}\right)\cdot\frac{\sqrt{3}-1}{2}}{3}=\frac{5\sqrt{3}-5}{12}\)

30 tháng 9 2018

\(\frac{4x}{1-x^2}=\sqrt{5}\)   ĐKXĐ : x khác 1

\(\Rightarrow4x=\sqrt{5}\left(1-x^2\right)\)

\(\Leftrightarrow4x=\sqrt{5}-x^2\sqrt{5}\)

\(\Leftrightarrow x^2\sqrt{5}-4x-\sqrt{5}=0\)

\(\Leftrightarrow x^2\sqrt{5}-5x+x-\sqrt{5}=0\)

\(\Leftrightarrow x\sqrt{5}\left(x-\sqrt{5}\right)+\left(x-\sqrt{5}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{5}\right)\left(x\sqrt{5}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{5}=0\\x\sqrt{5}=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{5}\left(tmđk\right)\\x=-\frac{1}{\sqrt{5}}=-\frac{\sqrt{5}}{5}\left(tmđk\right)\end{cases}}}\)

30 tháng 9 2018

\(4x=\sqrt{5}-\sqrt{5}x^2\)

\(\Rightarrow4x+\sqrt{5}x^2=\sqrt{5}\)

\(\Rightarrow x\left(4+\sqrt{5}x\right)=\sqrt{5}\)

\(\Rightarrow x.\sqrt{5}\left(\frac{4}{\sqrt{5}}+x\right)=\sqrt{5}\)

\(\Rightarrow x.\left(\frac{4}{\sqrt{5}}+x\right)=1\)

Với x = 1 \(\Rightarrow\frac{4}{\sqrt{5}}+x=1\Rightarrow x=1-\frac{4}{\sqrt{5}}=\frac{5-4\sqrt{5}}{5}\)

Với x = -1\(\Rightarrow\frac{4}{\sqrt{5}}+x=-1\Rightarrow x=-1-\frac{4}{\sqrt{5}}=-\frac{5+4\sqrt{5}}{5}\)

 ko có x thỏa mãn

6 tháng 10 2018

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{\left(x-1\right)^2}{x^2-1}\right).\frac{x+2003}{x}\)ĐKXĐ: \(x\ne-1;0;1\)

\(A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}.\frac{x+2003}{x}\)

\(A=\frac{\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}.\frac{x+2003}{x}\)

\(A=\frac{x+1}{x-1}.\frac{x+2003}{x}\)

\(A=\frac{x^2+2004x+2003}{x^2-x}\)