Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐK \(-1\le x\le7\)
Ta có \(VT=x^2-6x+13=\left(x-3\right)^2+4\ge4\)(1)
\(2VP=\sqrt{4\left(7-x\right)}+\sqrt{4\left(x+1\right)}\le\frac{4+7-x+4+1+x}{2}=8\)
=> \(VP\le4\)(2)
Từ (1);(2)
=> đẳng thức xảy ra khi x=3(tm ĐKXĐ)
Vậy x=3

1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
1/ \(x^3+2=3\sqrt[3]{3x-2}\)
Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ
\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)
Lấy trên - dưới ta được
\(x^3-a^3+3x-3a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)
\(\Leftrightarrow x=a\)
\(\Leftrightarrow x=\sqrt[3]{3x-2}\)
\(\Leftrightarrow x^3-3x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

1,
\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)
\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)
\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)
\(=\frac{2\sqrt{h-1}}{h-2}\)
Thay \(h=3\)vào D ta có:
\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)
Vậy với \(h=3\)thì \(D=2\sqrt{2}\)
2,
a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)
Vậy PT có nghiệm là \(x=2\)
b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)
\(\Leftrightarrow0=-3\)(vô lí)
Vậy PT đã cho vô nghiệm.

Điều kiện xác định
\(\hept{\begin{cases}2-x^2+2x\ge0\\-x^2-6x-8\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-0,73\le x\le2,73\\-4\le x\le-2\end{cases}}\)
=> Tập xác định là tập rỗng
Vậy pt vô nghiệm

1)x^4+x^2-6x+1=0>>>x^4+4x^2+4-3x^2-6x-3=0>>>(x^2+2)^2=3(x-1)^2.
>>Sau đó giải bt.
2)Đặt x^2-x+1=a;x+1=b thì:x^3+1=ab.
Pt:2a+5b^2+14ab=0(tự giải nha)

Bài 2 :
b) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\) (1)
ĐKXĐ : \(x\ge1\)
Pt(1) tương đương :
\(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=2\) (*)
Xét \(x\ge2\Rightarrow\sqrt{x-1}-1\ge0\)
\(\Rightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\)
Khi đó pt (*) trở thành :
\(\sqrt{x-1}+1+\sqrt{x-1}-1=2\)
\(\Leftrightarrow2\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\) ( Thỏa mãn )
Xét \(1\le x< 2\) thì \(x\ge2\Rightarrow\sqrt{x-1}-1< 0\)
Nên : \(\left|\sqrt{x-1}-1\right|=1-\sqrt{x-1}\). Khi đó pt (*) trở thành :
\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
\(\Leftrightarrow2=2\) ( Luôn đúng )
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{x|1\le x\le2\right\}\)
Bài 1 :
a) ĐKXĐ : \(-1\le a\le1\)
Ta có : \(Q=\left(\frac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\frac{3}{\sqrt{1-a^2}}\right)\)
\(=\left(\frac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right)\cdot\frac{\sqrt{1-a^2}}{3}\)
\(=\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}\cdot\frac{\sqrt{\left(1-a\right)\left(1+a\right)}}{3}\)
\(=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\)
Vậy \(Q=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\) với \(-1\le a\le1\)
b) Với \(a=\frac{\sqrt{3}}{2}\) thỏa mãn ĐKXĐ \(-1\le a\le1\)nên ta có :
\(\hept{\begin{cases}1-a=1-\frac{\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{\left(\sqrt{3}-1\right)^2}{2^2}\\1-a^2=1-\frac{3}{4}=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\sqrt{1-a}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2^2}}=\left|\frac{\sqrt{3}-1}{2}\right|=\frac{\sqrt{3}-1}{2}\\\sqrt{1-a^2}=\frac{1}{2}\end{cases}}\)
Do đó : \(Q=\frac{\left(3+\frac{1}{2}\right)\cdot\frac{\sqrt{3}-1}{2}}{3}=\frac{5\sqrt{3}-5}{12}\)

\(\frac{4x}{1-x^2}=\sqrt{5}\) ĐKXĐ : x khác 1
\(\Rightarrow4x=\sqrt{5}\left(1-x^2\right)\)
\(\Leftrightarrow4x=\sqrt{5}-x^2\sqrt{5}\)
\(\Leftrightarrow x^2\sqrt{5}-4x-\sqrt{5}=0\)
\(\Leftrightarrow x^2\sqrt{5}-5x+x-\sqrt{5}=0\)
\(\Leftrightarrow x\sqrt{5}\left(x-\sqrt{5}\right)+\left(x-\sqrt{5}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{5}\right)\left(x\sqrt{5}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{5}=0\\x\sqrt{5}=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{5}\left(tmđk\right)\\x=-\frac{1}{\sqrt{5}}=-\frac{\sqrt{5}}{5}\left(tmđk\right)\end{cases}}}\)
\(4x=\sqrt{5}-\sqrt{5}x^2\)
\(\Rightarrow4x+\sqrt{5}x^2=\sqrt{5}\)
\(\Rightarrow x\left(4+\sqrt{5}x\right)=\sqrt{5}\)
\(\Rightarrow x.\sqrt{5}\left(\frac{4}{\sqrt{5}}+x\right)=\sqrt{5}\)
\(\Rightarrow x.\left(\frac{4}{\sqrt{5}}+x\right)=1\)
Với x = 1 \(\Rightarrow\frac{4}{\sqrt{5}}+x=1\Rightarrow x=1-\frac{4}{\sqrt{5}}=\frac{5-4\sqrt{5}}{5}\)
Với x = -1\(\Rightarrow\frac{4}{\sqrt{5}}+x=-1\Rightarrow x=-1-\frac{4}{\sqrt{5}}=-\frac{5+4\sqrt{5}}{5}\)
ko có x thỏa mãn

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{\left(x-1\right)^2}{x^2-1}\right).\frac{x+2003}{x}\)ĐKXĐ: \(x\ne-1;0;1\)
\(A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}.\frac{x+2003}{x}\)
\(A=\frac{\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}.\frac{x+2003}{x}\)
\(A=\frac{x+1}{x-1}.\frac{x+2003}{x}\)
\(A=\frac{x^2+2004x+2003}{x^2-x}\)
Chúng ta sẽ giải phương trình:
\(\left(\right. x^{2} - x \left.\right)^{2} - \left(\right. x - 1 \left.\right)^{2} = \left(\right. x + 1 \left.\right) \left(\right. 3 x - 5 \left.\right)\)
Bước 1: Phân tích và mở rộng các biểu thức.
\(\left(\right. x^{2} - x \left.\right)^{2} = \left(\right. x^{2} \left.\right)^{2} - 2 \cdot x^{2} \cdot x + x^{2} = x^{4} - 2 x^{3} + x^{2}\)
Tuy nhiên, chúng ta có thể giữ lại dạng này để dễ làm hơn sau này.
\(\left(\right. x - 1 \left.\right)^{2} = x^{2} - 2 x + 1\)
\(\left(\right. x + 1 \left.\right) \left(\right. 3 x - 5 \left.\right) = x \cdot 3 x + x \cdot \left(\right. - 5 \left.\right) + 1 \cdot 3 x + 1 \cdot \left(\right. - 5 \left.\right) = 3 x^{2} - 5 x + 3 x - 5 = 3 x^{2} - 2 x - 5\)
Bước 2: Đặt phương trình ban đầu:
\(\left(\right. x^{2} - x \left.\right)^{2} - \left(\right. x - 1 \left.\right)^{2} = \left(\right. x + 1 \left.\right) \left(\right. 3 x - 5 \left.\right)\)
Thay các biểu thức đã tính:
\(\left(\right. x^{2} - x \left.\right)^{2} - \left(\right. x^{2} - 2 x + 1 \left.\right) = 3 x^{2} - 2 x - 5\)
Bước 3: Rút gọn phía trái:
Triển khai:
\(x^{4} - 2 x^{3} + x^{2} - x^{2} + 2 x - 1 = 3 x^{2} - 2 x - 5\)
dễ thấy:
\(x^{4} - 2 x^{3} + \left(\right. x^{2} - x^{2} \left.\right) + 2 x - 1 = 3 x^{2} - 2 x - 5\)
rút gọn:
\(x^{4} - 2 x^{3} + 2 x - 1 = 3 x^{2} - 2 x - 5\)
Bước 4: Chuyển tất cả về một phía:
\(x^{4} - 2 x^{3} + 2 x - 1 - 3 x^{2} + 2 x + 5 = 0\)
Rút gọn:
\(x^{4} - 2 x^{3} - 3 x^{2} + \left(\right. 2 x + 2 x \left.\right) + \left(\right. - 1 + 5 \left.\right) = 0\)
\(x^{4} - 2 x^{3} - 3 x^{2} + 4 x + 4 = 0\)
Bước 5: Giải phương trình bậc 4:
Phương trình:
\(x^{4} - 2 x^{3} - 3 x^{2} + 4 x + 4 = 0\)
Bước 6: Tìm nhân tử hoặc các nghiệm thử.
Thử nghiệm nghiệm bằng các số dễ:
\(1 - 2 - 3 + 4 + 4 = 4 \neq 0\)
\(1 + 2 - 3 - 4 + 4 = 0\)
Vậy x = -1 là nghiệm.
Bước 7: Phân tích chia đa thức:
Chia theo (x + 1):
Thực hiện chia đa thức:
\(x^{4} - 2 x^{3} - 3 x^{2} + 4 x + 4\) chia cho (x + 1).
Thực hiện chia:
Hoặc, thực hiện chia đa thức trực tiếp:
Dùng phân thức:
(use polynomial long division hoặc synthetic division).
Sử dụng synthetic division với -1:
Coefficients: 1 -2 -3 4 4
-1 | 1 -2 -3 4 4
| -1 3 0 -4
1 -3 0 4 0
Kết quả:
\(x^{3} - 3 x^{2} + 4 = 0\)
Bước 8: Giải phương trình cubic:
\(x^{3} - 3 x^{2} + 4 = 0\)
Thử nghiệm nghiệm:
Thử x = 1:
\(1 - 3 + 4 = 2 \neq 0\)
x = 2:
\(8 - 12 + 4 = 0\)
Vậy x = 2 là nghiệm.
Bước 9: Phân tích chia đa thức:
Chia đa thức ban đầu cho (x - 2):
Coefficients: 1 -3 0 4
2 | 1 -3 0 4
| 2 -2 -4
1 -1 -2 0
Kết quả:
Thương là: \(x^{2} - x - 2\)
Nghiệm của:
\(x^{2} - x - 2 = 0\)
sử dụng công thức:
\(x = \frac{1 \pm \sqrt{1 - 4 \times \left(\right. - 2 \left.\right)}}{2} = \frac{1 \pm \sqrt{1 + 8}}{2} = \frac{1 \pm \sqrt{9}}{2}\)
\(x = \frac{1 \pm 3}{2}\)
Vậy có hai nghiệm:
Bước 10: Tập nghiệm tổng quát:
Lưu ý: Nghiệm \(x = 2\) xuất hiện hai lần (đáp ứng nghiệm nhân), và nghiệm \(x = - 1\) cũng xuất hiện hai lần.
Kết luận:
Nghiệm của phương trình là:
\(\boxed{x = - 1 (\text{nhi} \overset{ˋ}{\hat{\text{e}}} \text{u}\&\text{nbsp};\text{l} \overset{ˋ}{\hat{\text{a}}} \text{n}) ; x = 2 (\text{nhi} \overset{ˋ}{\hat{\text{e}}} \text{u}\&\text{nbsp};\text{l} \overset{ˋ}{\hat{\text{a}}} \text{n})}\)
Trong tập nghiệm, các nghiệm chính là:
\(\boxed{x = - 1 , x = 2}\)tick được không