K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC có 

BE là đường cao ứng với cạnh AC(gt)

CF là đường cao ứng với cạnh AB(gt)

BE cắt CF tại H(gt)

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

Suy ra: AH⊥BC

b) Xét tứ giác BHCK có 

HC//BK(gt)

BH//CK(gt)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà M là trung điểm của BC(gt)

nên M là trung điểm của HK

hay H,M,K thẳng hàng(đpcm)

2 tháng 5 2023

<Tự vẽ hình nha>

a)Xét ΔABE và ΔACF

góc AEB=góc AFC

góc BEA=góc CFA

Vậy ΔABE ∼ ΔACF(g.g)

\(\dfrac{AB}{AC}\)=\(\dfrac{AE}{AF}\)⇔AB.AF=AE.AC

\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)

b)Xét ΔAEF và ΔABC

Góc A:chung

\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)(cmt)

Vậy ΔAEF∼ΔABC (g.g)

 

 

 

 

 

a: Xét ΔABE và ΔACF có

góc AEB=góc AFC

góc A chung

=>ΔABE đồng dạng với ΔACF

=>AE/AF=AB/AC

=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng với ΔABC

=>FE/BC=AE/AB

=>FE*AB=AE*BC

a: Xét ΔABE và ΔACF có

góc AEB=góc AFC

góc BAE chung

=>ΔABE đồng dạng với ΔACF

b: ΔABE đồng dạng với ΔACF

=>AE/AF=AB/AC

=>AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng với ΔABC

=>EF/BC=AE/AB

=>AE*BC=AB*EF

29 tháng 2 2020

bạn gửi lại link vào chỗ tin nhắn của mk đc ko. THANKS!!!

Kẻ CG//MN(G thuộc AB), CG cắt AD tại K

=>HI vuông góc CK

=>I là trựctâm của ΔHCK

=>KI vuông góc CH

=>KI//AB

=>KI//BG

=>K là trung điểm của CG

MN//GC

=>MH/GK=HN/KC

mà GK=KC

nên MH=HN

3 tháng 3 2021

A B C D E F H K M I G

a) Ta có:

\(\left\{{}\begin{matrix}BH\perp AC\\KC\perp AC\end{matrix}\right.\)       ⇒ \(BH\text{//}KC\) 

\(\left\{{}\begin{matrix}CH\perp AB\\BK\perp AB\end{matrix}\right.\)       ⇒ \(CH\text{//}BK\)

\(Xét\) \(tứ\) \(giác\) \(BKCH\) \(có:\) \(\left\{{}\begin{matrix}BH\text{//}KC\\CH\text{//}BK\end{matrix}\right.\)

⇒ Tứ giác \(BKCH\) là hình hình hành. Mà M là trung điểm của đường chéo BC

⇒ \(\left\{{}\begin{matrix}H,M,K_{ }thẳng_{ }hàng\\HM=MK\end{matrix}\right.\)

Xét \(\Delta AHK\) có: \(\left\{{}\begin{matrix}AI=IK\left(gt\right)\\HM=MK\left(cmt\right)\end{matrix}\right.\)

⇒ \(IM\) là đường trung bình của \(\Delta AHK\)

⇒ \(IM=\dfrac{1}{2}AH\)              \(\left(ĐPCM\right)\)

c)

Ta có:

\(\dfrac{S_{\Delta HBC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HD.BC}{\dfrac{1}{2}.AD.BC}=\dfrac{HD}{AD}\)  

\(\dfrac{S_{\Delta HAC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HE.AC}{\dfrac{1}{2}.BE.AC}=\dfrac{HE}{BE}\)

\(\dfrac{S_{\Delta HBA}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HF.AB}{\dfrac{1}{2}.CF.AB}=\dfrac{HF}{CF}\)

⇒ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{\Delta HBC}+S_{\Delta HAC}+S_{\Delta HAB}}{S_{\Delta ABC}}=\dfrac{S_{\Delta ABC}}{S_{\Delta ABC}}\)

⇔ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)          \(\left(ĐPCM\right)\)