
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: ta có: \(\hat{xAB}+\hat{yBA}=45^0+135^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên Ax//By
b: Gọi BM là tia đối của tia By
Khi đó, ta có: \(\hat{MBA}+\hat{yBA}=180^0\) (hai góc kề bù)
=>\(\hat{MBA}=180^0-135^0=45^0\)
Ta có: tia BM nằm giữa hai tia BA và BC
=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)
=>\(\hat{CBM}=75^0-45^0=30^0\)
Ta có: \(\hat{MBC}=\hat{BCz}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên By//Cz

a: Ta có: tia CA nằm giữa hai tia CB và CD
=>\(\hat{BCD}=\hat{BCA}+\hat{ACD}=80^0+30^0=110^0\)
Ta có: \(\hat{DCB}+\hat{B}=110^0+70^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
b: ta có: AB//CD
=>\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong)
=>\(\hat{BAC}=80^0\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}=\frac{a+b-c+a+c-b+b+c-a}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
=>\(\begin{cases}a+b-c=c\\ a+c-b=b\\ b+c-a=a\end{cases}\Rightarrow\begin{cases}a+b=2c\\ a+c=2b\\ b+c=2a\end{cases}\)
\(A=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)

a: Ta có: tia CA nằm giữa hai tia CB và CD
=>\(\hat{BCD}=\hat{BCA}+\hat{DCA}=80^0+30^0=110^0\)
ta có: \(\hat{BCD}+\hat{CBA}=110^0+70^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
b: AB//CD
=>\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong)
=>\(\hat{BAC}=80^0\)
a, ta có A= 180 độ -70 độ -30 độ = 80 độ ( tổng 3 góc trong 1 tam giác = 180 độ )
mà AB=CD=80 độ nên AB//CD ( vì song song nên bằng nhau ) 1
b, góc BAC = 80 độ (1)

Bài 8:
Chu vi đáy là:
3,5+3,5+3+6=7+9=16(cm)
Diện tích xung quanh là: \(16\cdot11,5=184\left(\operatorname{cm}^2\right)\)
Bài 9:
Diện tích đáy là:
\(S=\frac12\cdot7\cdot24=12\cdot7=84\left(m^2\right)\)
Thể tích của khối bê tông là:
\(84\cdot22=1848\left(m^3\right)\)
Số tiền phải trả là:
\(1848\cdot2500000=4620000000\) (đồng)

Cách 1: ta có: \(\hat{yAB}+\hat{y^{\prime}AB}=180^0\) (hai góc kề bù)
=>\(\hat{y^{\prime}AB}=180^0-105^0=75^0\)
ta có: \(\hat{y^{\prime}AB}=\hat{x^{\prime}Bz}\left(=75^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Ay//Bz
=>yy'//Bz
Cách 2:
Ta có: \(\hat{x^{\prime}Bz}+\hat{xBz}=180^0\) (hai góc kề bù)
=>\(\hat{xBz}=180^0-75^0=105^0\)
Ta có: \(\hat{xBz}=\hat{yAB}\left(=105^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ay//Bz
=>yy'//Bz

a: Qua B, kẻ đường thẳng MN đi qua B và song song với Ax và Cy, với tia BM và tia Ax nằm trên cùng một nửa mặt phẳng bờ chứa tia AB
BM//Ax
=>\(\hat{xAB}+\hat{ABM}=180^0\) (hai góc trong cùng phía)
=>\(\hat{xAB}=180^0-\hat{ABM}\)
BN//Cy
=>\(\hat{yCB}+\hat{BCN}=180^0\) (hai góc trong cùng phía)
=>\(\hat{yCB}=180^0-\hat{BCN}\)
Ta có: \(\hat{MBA}+\hat{ABC}+\hat{CBN}=180^0\)
=>\(\hat{ABC}=180^0-\hat{ABM}-\hat{CBN}\)
\(=180^0-\left(180^0-\hat{xAB}\right)-\left(180^0-\hat{yCB}\right)=\hat{xAB}-180^0+\hat{yCB}\)
=>\(\hat{xAB}+\hat{yCB}-\hat{ABC}=180^0\)
b: Qua B, kẻ đường thẳng MN đi qua B và song song với Ax, với tia BM và tia Ax nằm trên cùng một nửa mặt phẳng bờ chứa tia AB
BM//Ax
=>\(\hat{xAB}+\hat{ABM}=180^0\) (hai góc trong cùng phía)
=>\(\hat{ABM}=180^0-\hat{xAB}\)
Ta có: \(\hat{BCy}+\hat{BAx}-\hat{ABC}=180^0\)
=>\(\hat{ABC}=\hat{BCy}+\hat{BAx}-180^0\)
Ta có: \(\hat{ABM}+\hat{ABC}+\hat{CBN}=180^0\)
=>\(180^0-\hat{xAB}+\hat{BCy}+\hat{BAx}-180^0+\hat{CBN}=180^0\)
=>\(\hat{BCy}+\hat{CBN}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên Cy//BN
ta có: Cy//BN
Ax//BN
Do đó: Cy//Ax

\(\frac{x}{10}=\frac{y}{5}\)
=>\(\frac{x}{2}=\frac{y}{1}\)
=>\(\frac{x}{4}=\frac{y}{2}\)
mà \(\frac{y}{2}=\frac{z}{3}\)
nên \(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)
mà 2x-3y+4z=350
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+4z}{2\cdot4-3\cdot2+4\cdot3}=\frac{350}{14}=25\)
=>\(\begin{cases}x=25\cdot4=100\\ y=25\cdot2=50\\ z=25\cdot3=75\end{cases}\)
Giải bài toán hình học này như sau:
Bài 3:
Cho tam giác ABC cân tại A, gọi M là trung điểm của BC.
Lấy D trên đoạn AB, K trên tia đối tia CA sao cho BD = CK.
DK cắt BC tại I. Kẻ DP ⊥ BC tại P, KQ ⊥ BC tại Q.
a) Chứng minh tam giác BDP = CKQ và ID = IK
Xét tam giác BDP và tam giác CKQ:
=> Tam giác BDP = Tam giác CKQ (c.g.n – cạnh, góc vuông, cạnh)
Suy ra:
DP = KQ
BP = CQ
Xét tam giác IDP và tam giác IKQ:
=> Tam giác IDP = Tam giác IKQ (c.g.n)
=> ID = IK
b) Đường thẳng vuông góc DK tại I cắt AM tại S. Chứng minh ∠SCK vuông
Ta có:
Nhận xét:
Trong tam giác CKQ:
⇒ ∠SCK vuông
c) Gọi đường thẳng MD tại M cắt AC tại E. Chứng minh:
MD + ME ≥ AD + AE
Giải thích:
ME + MD ≥ DE
Tuy nhiên, để chứng minh chính xác:
Sử dụng bất đẳng thức tam giác:
Xét hai tam giác ADM và AEM, ta có:
=> MD + ME ≥ AD + AE
Kết luận:
a) ΔBDP = ΔCKQ và ID = IK
b) ∠SCK = 90°
c) MD + ME ≥ AD + AE