K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đầu tiên, ta cần xác định thời gian chuẩn bị bề mặt. Đề bài cho biết 5 người thợ chuẩn bị bề mặt cần 10 giờ để hoàn thành. Vì công việc chuẩn bị bề mặt là một công việc chung, nên thời gian hoàn thành không phụ thuộc vào số lượng thợ. Vậy, thời gian chuẩn bị bề mặt là 10 giờ.

Tiếp theo, ta xác định thời gian sơn phủ. Đề bài cho biết 3 thợ sơn phủ cần 8 giờ để hoàn thành công việc sơn phủ.

Cuối cùng, ta tính tổng thời gian hoàn thành công việc. Tổng thời gian sẽ bằng thời gian chuẩn bị bề mặt cộng với thời gian sơn phủ. Vậy, tổng thời gian là: 10+8=1810+8=18 giờ.

Vậy, tổng thời gian để hoàn thành việc sơn toàn bộ bức tường là 18 giờ.

28 tháng 8 2019
bh anh bảo nhá nhân chéo hai vế xem
28 tháng 8 2019

@hieu nguyen Em có nhân chéo hai vế và khai triển ra nhưng cũng không ra cái gì ạ. 

5 tháng 10 2016

Dễ nhận thấy pt này có một nghiệm là 1 nên ta sẽ tạo nhân tử là x-1

Ta có: \(2x^4+4x^3-7x^2-5x+6=0\)

<=>  \(\left(2x^4-2x^3\right)+\left(6x^3-6x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)

<=>    \(2x^3\left(x-1\right)+6x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)

<=>  \(\left(x-1\right)\left(2x^3+6x^2-x-6\right)=0\)

<=>  \(\orbr{\begin{cases}x=1\\2x^3+6x-x-6=0\end{cases}}\)

Bạn có thể giải pt 2x3+6x-x-6=0 bằng pp Cardano nha, cm dài lắm

5 tháng 10 2016

Ta tách được \(2x^4+4x^3-7x^2-5x+6=0\Leftrightarrow\left(x-1\right)\left(2x^3+6x-x-6\right)=0\)

Vậy pt có 1 nghiệm x= 1.

Ta giải pt bậc ba theo công thức Cardano:

\(2x^3+6x^2-x-6=0\left(1\right)\Leftrightarrow x^3+3x^2-\frac{1}{2}x-3=0\)

Đặt \(x=y-1\Rightarrow y^3-\frac{7}{2}y-\frac{1}{2}=0\left(2\right)\)

\(\Delta=27\left(\frac{-1}{2}\right)^2-4\left(\frac{7}{2}\right)^3=-\frac{659}{4}< 0\)

Vậy pt (2) có 3 nghiệm phân biệt thuộc khoảng \(\left(-\frac{\sqrt{42}}{3};\frac{\sqrt{42}}{3}\right)\)

Đặt \(y=\frac{\sqrt{42}}{3}cost\left(t\in\left(0;\pi\right)\right)\). Thay vào pt(2) ta có: \(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\)

Ta tìm được 3 nghiệm t thuộc khoảng \(\left(0;\pi\right)\), sau đó tìm cost rồi suy ra y và x.

Cô tìm một nghiệm để giúp em kiểm chứng nhé. Em có thể thay giá trị nghiệm để kiểm tra.

\(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\Rightarrow t=\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\Rightarrow y=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\)

Vậy \(x=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}-1\). Đó là một nghiệm, em có thể tìm 2 nghiệm còn lại bằng cách tương tự.

10 tháng 11 2016

Bài 1: Giả sử

\(8-\sqrt{2}>4+\sqrt{5}\)

\(\Leftrightarrow4>\sqrt{2}+\sqrt{5}\)

\(\Leftrightarrow16>7+2\sqrt{10}\)

\(\Leftrightarrow9>2\sqrt{10}\Leftrightarrow81>40\)(đúng)

Vậy \(8-\sqrt{2}>4+\sqrt{5}\)

10 tháng 11 2016

Bài 3: Ta có

\(x^2+2015x-2014=2\sqrt{2017x-2016}\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\left(2017x-2016\right)-2\sqrt{2017x-2016}+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{2017x-2016}-1=0\end{cases}}\)

\(\Leftrightarrow x=1\)

1 tháng 10 2018

\(a)\)\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\)\(\sqrt{6-6\sqrt{6}+9}+\sqrt{24-12\sqrt{6}+9}\)

\(=\)\(\sqrt{\left(\sqrt{6}+3\right)}+\sqrt{\left(\sqrt{24}+3\right)}\)

\(=\)\(\left|\sqrt{6}+3\right|+\left|\sqrt{24}+3\right|\)

\(=\)\(\sqrt{6}+3+\sqrt{24}+3\)

\(=\)\(\sqrt{6}\left(1+\sqrt{4}\right)+9\)

\(=\)\(3\sqrt{6}+9\)

Chúc bạn học tốt ~ 

1 tháng 10 2018

\(b)\)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)

\(=\)\(\left|2-\sqrt{3}\right|+\sqrt{3-2\sqrt{3}+1}\)

\(=\)\(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\) ( vì \(2=\sqrt{4}>\sqrt{3}\) ) 

\(=\)\(2-\sqrt{3}+\left|\sqrt{3}-1\right|\)

\(=\)\(2-\sqrt{3}+\sqrt{3}-1\) ( vì \(\sqrt{3}>\sqrt{1}=1\) ) 

\(=\)\(1\)

Chúc bạn học tốt ~ 

PS : mới lớp 8 sai thì thông cảm >.< 

13 tháng 8 2021

sửa hộ mình 

pt có 2 nghiệm phân biệt 

\(a_1=-5-\sqrt{24};a_2=-5+\sqrt{24}\)

13 tháng 8 2021

giải phương trình hả bạn ? 

\(a^2+10a+1=0\)

\(\Delta'=25-1=24>0\)

pt có 2 nghiệm pb 

\(x_1=\frac{5-\sqrt{24}}{1}=5-\sqrt{24};x_2=5+\sqrt{24}\)

23 tháng 10 2016

a/ Đặt \(\hept{\begin{cases}\sqrt{3+\sqrt{5}}=a\\\sqrt{3-\sqrt{5}}=b\end{cases}}\)

Khi đó ta có a2 + b2 = 6; ab = 2; a + b = \(\sqrt{10}\) ; a - b = \(\sqrt{2}\); a2 - b2 = \(2\sqrt{5}\)

Ta có cái ban đầu

\(=\frac{a^2}{\sqrt{10}+a}-\frac{b^2}{\sqrt{10}+b}\)=

\(\frac{\sqrt{10}a^2+a^2b-\sqrt{10}b^2-ab^2}{10+\sqrt{10}a+\sqrt{10}b+ab}\)

\(=\frac{10\sqrt{2}+2\sqrt{2}}{10+10+2}=\frac{6\sqrt{2}}{11}\)

23 tháng 10 2016

Câu còn lại làm tương tự

23 tháng 5 2017

Thế vào thì bạn bấm máy ra thôi

5 tháng 7 2018

Đặt x = a - b ; y = b - c ; z = c - a thì x + y + z = a - b + b - c + c - a = 0

Ta có : \(\sqrt{\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}}\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{y})^2-2(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx})\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2-2\frac{x+y+z}{xyz}\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2=(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a})^2(đpcm)\)

Chúc bạn học tốt

26 tháng 8 2017

Giả sử con muỗi nặng m (gam), còn con voi nặng V (gam). Ta có

                        .

Cộng hai về với -2mV. Ta có

                         - 2mV +  =  - 2mV + 

hay                  .

Lấy căn bậc hai mỗi vế của bất đẳng thức trên, ta được:

                       

Do đó                m - V = V - m

Từ đó ta có 2m = 2V, suy ra m = V. Vậy con muỗi nặng bằng con voi (!).

Hướng dẫn giải:

Phép chứng minh sai ở chỗ: sau khi lấy căn bậc hai mỗi vế của đẳng thức . Ta được kết quả │m - V│ = │V - m│ chứ không thể có m - V = V - m.

26 tháng 8 2017

là sao v bạn