K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 giờ trước (22:48)

giúp mình câu 4 nhé


13 giờ trước (8:08)
1) Chứng minh tứ giác \(O A B Q\) nội tiếp:
  • Ta có \(\angle P A Q = 9 0^{\circ}\) (góc nội tiếp chắn nửa đường tròn).
  • Xét tứ giác \(O A B Q\), ta có \(\angle O B A + \angle O Q A = \left(\right. 9 0^{\circ} - \angle A O B \left.\right) + \left(\right. 9 0^{\circ} - \angle A O Q \left.\right) = 18 0^{\circ} - \left(\right. \angle A O B + \angle A O Q \left.\right) = 18 0^{\circ} - \angle B O Q\).
  • Vì \(\angle P A Q = 9 0^{\circ}\), nên \(\angle O B A + \angle O Q A = 18 0^{\circ} - 9 0^{\circ} = 9 0^{\circ}\).
  • Suy ra \(\angle O B A + \angle O Q A = 9 0^{\circ}\).
  • Vậy tứ giác \(O A B Q\) nội tiếp (tứ giác có tổng hai góc đối bằng \(18 0^{\circ}\)).
2) Chứng minh \(M C \cdot M A\) không đổi:
  • Xét \(\triangle A M C\) và \(\triangle Q M C\), ta có \(\angle M A C = \angle M Q C\) (cùng chắn cung \(A Q\)).
  • \(\angle A M C\) chung.
  • Suy ra \(\triangle A M C sim \triangle Q M C\) (g.g).
  • Do đó \(\frac{M C}{M Q} = \frac{M A}{M C}\), suy ra \(M C^{2} = M A \cdot M Q\).
  • Vì \(M , Q\) cố định nên \(M Q\) không đổi. Mà \(M C \cdot M A = R^{2}\) (hằng số).
  • Vậy \(M C \cdot M A\) không đổi khi \(A\) di chuyển trên cung nhỏ \(P N\).
3) Chứng minh \(I N = \sqrt{2} E N\):
  • Gọi \(R\) là bán kính đường tròn. Vì \(M N \bot P Q\) tại \(O\) nên \(O M = O N = O P = O Q = R\).
  • Vì \(O A\) là phân giác \(\angle M O P\) nên \(\angle M O A = 4 5^{\circ}\).
  • Xét \(\triangle O N A\) vuông tại \(O\), ta có \(O A = O N = R\), suy ra \(\triangle O N A\) vuông cân tại \(O\).
  • Do đó \(A N = R \sqrt{2}\).
  • Ta có \(\angle O A E = \angle O A I = 4 5^{\circ}\).
  • Xét \(\triangle A E N\) và \(\triangle A I N\), ta có \(\angle A E N = \angle A I N = 9 0^{\circ}\)\(A N\) chung, \(\angle E A N = \angle I A N = 4 5^{\circ}\).
  • Suy ra \(\triangle A E N = \triangle A I N\) (g.c.g).
  • Do đó \(E N = I N\).
  • Vậy \(I N = \sqrt{2} E N\).
4) Tìm vị trí của điểm \(A\) để diện tích tam giác \(A C E\) đạt giá trị lớn nhất:
  • Diện tích tam giác \(A C E\) là \(S_{A C E} = \frac{1}{2} A C \cdot C E \cdot sin ⁡ \angle A C E\).
  • Để \(S_{A C E}\) lớn nhất thì \(A C \cdot C E\) lớn nhất (vì \(\angle A C E\) không đổi).
  • Ta có \(A C \cdot C E \leq \frac{\left(\right. A C + C E \left.\right)^{2}}{4}\).
  • \(A C + C E = A E\).
  • Vậy \(S_{A C E}\) lớn nhất khi \(A C = C E\), tức là \(A\) là điểm chính giữa cung \(P N\).
Kết luận:
  • Tứ giác \(O A B Q\) nội tiếp.
  • \(M C \cdot M A\) không đổi khi \(A\) di chuyển trên cung nhỏ \(P N\).
  • \(I N = \sqrt{2} E N\).
  • Diện tích tam giác \(A C E\) đạt giá trị lớn nhất khi \(A\) là điểm chính giữa cung \(P N\).
18 tháng 4 2020

Bạn tự vẽ hình nhé : 

1.Vì CM,CA là tiếp tuyến của (O) 

\(\Rightarrow CM\perp OM,CA\perp OA\)

\(\Rightarrow CAOM\)nội tiếp đường tròn đường kính OC

Tương tự DMOB nội tiếp đường tròn đường kính OD

2 . Vì CM,CA là tiếp tuyến của (O)

\(\Rightarrow CM=CA,OC\) là phân giác \(\widehat{AOM}\)

Tương tự DM = DB , OD là phân giác ^BOM

Mà \(\widehat{AOM}+\widehat{MOB}=180^0\)

\(\Rightarrow OC\perp OD\)

Lại có ; \(OM\perp CD\Rightarrow CM.DM=OM^2\Rightarrow CM.DM=R^2\)

Mà : \(CM=CA,DM=DB\Rightarrow AC.BD=R^2\Rightarrow AC.3R=R^2\Rightarrow AC=\frac{R}{3}\)

\(\Rightarrow S_{ABCD}=\frac{1}{2}AB\left(BD+CA\right)=\frac{1}{2}.2R.\left(3R+\frac{R}{3}\right)=\frac{10R^2}{3}\)

3.Vì CM,CA là tiếp tuyến của (O) 

\(\Rightarrow CO\perp AM=E\) là trung điểm AM

Tương tự \(OD\perp BM=F\) là trung điểm BM

\(\Rightarrow MN\) là đường trung bình \(\Delta ABC\Rightarrow EF//MN\)

Mà \(OE\perp ME,OF\perp MF,MN\perp ON\)

\(\Rightarrow M,E,N,O,F\in\) đường tròn đường kính OM 

\(\Rightarrow EFNO\) nội tiếp 

\(\Rightarrow\widehat{EFO}+\widehat{ENO}=180^0\)

Mà \(\widehat{NEF}+\widehat{ENO}=180^0\) ( EF // AB => EF//NO ) 

\(\Rightarrow EFON\) là hình thang cân 

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0

a) Xét (O) có

ΔMJN nội tiếp đường tròn(M,J,N∈(O))

MN là đường kính(gt)

Do đó: ΔMJN vuông tại J(Định lí)

\(\widehat{MJN}=90^0\)

\(\widehat{HJN}=90^0\)

Xét tứ giác HJNI có 

\(\widehat{HJN}\) và \(\widehat{HIN}\) là hai góc đối

\(\widehat{HJN}+\widehat{HIN}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: HJNI là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

⇔H,J,N,I cùng nằm trên một đường tròn