
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+....+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{20}.10=\frac{1}{2}\) ( 10 số hạng 1/20)
\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+....+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{1}{30}.10=\frac{1}{3}\) ( 10 số hạng 1/30 )
.....................................
\(\frac{1}{90}+\frac{1}{91}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}.10=\frac{1}{10}\). Và: \(\frac{1}{100}=\frac{1}{100}\)
Nên: \(C=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}+\frac{1}{100}>1\) (đpcm)
Ta có:
\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{19}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}+\frac{10}{40}+\frac{1}{4}\)
\(=>\frac{1}{10}+\frac{1}{11}+...+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)
Vậy \(C>1\)

a, Ta có: \(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{50}=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+....+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{20}{30}=\frac{2}{3}\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\)
\(\Rightarrow A>\frac{2}{3}+\frac{1}{3}=1>\frac{1}{2}\)
Vậy A > 1/2
b, Ta có: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};........;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow B>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)
Vậy B > 1/2
c, Ta có: \(C=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow C>\frac{1}{10}+\frac{9}{10}=\frac{10}{10}=1\)
Vậy C > 1

Trả lời:
Bài 1 :
a, n + 1 là ước của 15
Vì n + 1 là ước của 15 nên \(n+1\inƯ\left(15\right)\)
hay \(n+1\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
\(\Rightarrow n\in\left\{0;-2;2;-4;4;-6;14;-16\right\}\)
Vậy \(n\in\left\{0;-2;2;-4;4;-6;14;-16\right\}\)
b, n + 5 là ước của 12
Vì n + 5 là ước của 12
\(\Rightarrow n+5\inƯ\left(12\right)\)
hay \(n+5\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
\(\Rightarrow n\in\left\{-4;-6;-3;-7;-2;-8;-1;-9;1;-11;7;-17\right\}\)
Vậy \(n\in\left\{-4;-6;-3;-7;-2;-8;-1;-9;1;-11;7;-17\right\}\)
~ Học tốt ~
Bn ơi nếu có trong sgk thì bn cs thể tham khảo ở vietjack hoặc lời giải hay nha
Olm chào em đây là dạng toán nâng cao chuyên đề phân số, sấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
A = \(\frac{1}{10^2}\) + \(\frac{1}{11^2}\) + ...+ \(\frac{1}{99^2}\)
\(\frac{1}{10^2}\) > \(\frac{1}{10.11}\) = \(\frac{1}{10}-\frac{1}{11}\)
\(\frac{1}{11^2}\) > \(\frac{1}{11.12}\) = \(\frac{1}{11}-\frac{1}{12}\)
............................................
\(\frac{1}{99^2}\) > \(\frac{1}{99.100}\) = \(\frac{1}{99}\) - \(\frac{1}{100}\)
Cộng vế với vế ta có:
A = \(\frac{1}{9^2}\) + \(\frac{1}{10^2}\) +...+\(\frac{1}{99^2}\) > \(\frac{1}{10}-\frac{1}{100}\)
A = \(\frac{1}{9^2}\) + \(\frac{1}{10^2}\) + ... + \(\frac{1}{99^2}\) > \(\frac{9}{100}\) (đpcm)
Em chào cô Thương Hoài ạ