Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x-\sqrt{x}-2=\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\)

Theo đề ta có
\(x=2-\sqrt{3}\)
\(\Rightarrow\left(4-x\right)x=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\)
Q = x5 - 3x4 - 3x3 + 6x2 - 20x + 2020
= (x5 - 4x4) + (x4 - 4x3) + (x3 - 4x2) + (10x2 - 40x) + 20x + 2020
= - x3 - x2 - x - 10 + 20x + 2020
= (- x3 + 4x2) + ( - 5x2 + 20x) - x + 2010
= x + 5 - x + 2010 = 2015

Ta có: \(xyz\le\left(\frac{x+y+z}{3}\right)^3=\frac{1}{27}\) và \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\left(\frac{x+y+y+z+z+x}{3}\right)^3=\frac{8}{27}\)
\(\Rightarrow B\le\frac{1}{27}.\frac{8}{27}=\frac{8}{729}\Rightarrow k=\frac{8}{729}\Rightarrow9^3.k=8\)

Lời giải:
Cho $x=3$ thì:
$P(2)+2P(2)=2^2\Rightarrow 3P(2)=4\Rightarrow P(2)=\frac{4}{3}$
$\Rightarrow P(x-1)=x^2-2P(2)=x^2-2.\frac{4}{3}=x^2-\frac{8}{3}$
$\Rightarrow P(x)=(x+1)^2-\frac{8}{3}$
Thay $x=\sqrt{2013}-1$ ta có:
$P(\sqrt{2013}-1)=(\sqrt{2013}-1+1)^2-\frac{8}{3}=2013-\frac{8}{3}=\frac{6031}{3}$

\(-6a^2+17a-10=-6a^2+12a+5a-10\)
\(=-6a\left(a-2\right)+5\left(a-2\right)=\left(a+2\right)\left(5-6a\right)\)

\(\sqrt{9x-9}+\sqrt{4x-4}=\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}\)\(=3\sqrt{x-1}+2\sqrt{x-1}=5\sqrt{x-1}\)= 25
=> \(\sqrt{x-1}=\frac{25}{5}=5\)=> x - 1 = 52 = 25 => x = 25 + 1 = 26
Bạn ơi, chưa có hình :))))