K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để chứng minh AE là phân giác của góc HAC trong tam giác ABC, với các thông tin đã cho, chúng ta sẽ thực hiện các bước như sau:

  1. Chứng minh AD là phân giác của góc BAX:
    Vì D là điểm trên cạnh AC sao cho BD là phân giác của góc ABC. Điều này có nghĩa là:
\(\frac{A B}{A C} = \frac{A D}{D C}\)
  1. Vẽ đường thẳng DE vuông góc với BC:
    Theo định nghĩa, DE vuông góc với BC, cho nên ta có:
\(\angle E D B = 9 0^{\circ}\)
  1. Kẻ AH vuông góc với BC:
    Theo yêu cầu, AH cũng vuông góc với BC mà không cần phải chứng minh chi tiết, vì đây là giả thuyết đã cho.
  2. Chứng minh AE là phân giác của góc HAC:
    • Do AD là phân giác của góc BAX, ta có:
\(\frac{A B}{A C} = \frac{A D}{D C}\)
  • Vì DE vuông góc với BC và AH vuông góc với BC, suy ra tam giác ADE và tam giác AHE là hai tam giác vuông.
  • Áp dụng định lý phân giác góc trong tam giác vuông (tương tự tính chất phân giác trong tam giác không vuông), ta có thể chứng minh rằng tỉ lệ:
\(\frac{A H}{H E} = \frac{A D}{D C}\)
  • Từ đó, theo định lý về phân giác, suy ra AE là phân giác của góc HAC.

Như vậy, ta đã chứng minh rằng đường thẳng AE chính là phân giác của góc HAC.

Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\hat{ABD}=\hat{EBD}\)

Do đó: ΔBAD=ΔBED

=>BA=BE

=>ΔBAE cân tại B

Ta có: \(\hat{BAE}+\hat{CAE}=\hat{BAC}=90^0\)

\(\hat{HAE}+\hat{BEA}=90^0\) (ΔEHA vuông tại H)

\(\hat{BAE}=\hat{BEA}\) (ΔBAE cân tại B)

nên \(\hat{CAE}=\hat{HAE}\)

=>AE là phân giác của góc HAC

26 tháng 4 2016

a) ta có

goc BAD+ goc DAC =90 (2 góc kề phụ)

goc ADB+goc HAD=90 ( tam giác AHD vuông tại H)

goc DAC=goc HAD (AD lả p/g goc  HAC)

==> góc BAD= goc ADB

-> tam giac BAD cân tại B

b) xet tam giac ADH và tam giac ADE ta có

AD= AD ( cạnh chung) 

goc HAD = goc DAC ( AD là p/g goc HAC)

goc AID = góc AIE (=90)

--> tam giac ADH= tam giac ADE (g-c-g)

-< AH= AE ( 2 canh tương ứng)

Xét tam giac AHD và tam giac AED ta có

AD=AD ( cạnh chung)

AH=AE (cmt)

goc DAH= goc DAE ( AD là p/g HAC)

-> tam giac AHD= tam giac AED ( c-g-c)

-> goc AHD= goc AED ( 2 góc tương ứng

mà góc AHD = 90 ( AH vuông góc BC)

nên AED =90

-> DE vuông góc AC

c) Xét tam giac ABH vuông tại H ta có

AB2= AH2+BH2 ( dly pi ta go)

152=122+BH2

BH2 =152-122=81

BH=9

ta có BA=BD ( tam giác ABD cân tại B)

          BA=15 cm (gt)

-> BD=15

mà BH+HD=BD ( H thuộc BD)

nên 9+HD=15

HD=15-9=6

Xét tam giác ADH vuông tại H ta có

AD2=AH2+HD2 ( định lý pitago)

AD2=122+62=180

-> AD=\(\sqrt{180}=6\sqrt{5}\)

12 tháng 5 2018

a) Vì BD = BA nên ΔΔBAD cân tại B

=> BADˆBAD^góc BAD = g BDA (góc đáy) →→-> đpcm

b) Ta có: góc BAD + g DAC = 90o

=> g DAC = 90o - g BAD (1)

Áp dụng tc tam giác vuông ta có:

g HAD + g BDA = 90o

=> g HAD = 90o - g BDA (2)

mà góc BAD = g BDA (câu a)

=> gDAC = g HAD

=> AD là tia pg của g HAC.

c) Áp dụng tc tổng 3 góc trong 1 tg ta có:

g AHD + g HDA + g HAD = 180o

=> 90o + g HDA + g HAD = 180o

=> g HDA + g HAD = 90o (3)

g DAC + g DKA + g ADK = 180o

=> g DAC + 90o + g ADK = 180o

=> g DAC + g ADK = 90o (4)

mà gDAC = g HAD hay gDAK = gHAD

Xét tgHAD và tgKAD có:

g HDA = g ADK (c/m trên)

AD chung

g HAD = g DAK (c/m trên)

=> tgHAD = tgKAD (g.c.g)

=> AH = AK (2 cạnh t/ư)

9 tháng 8 2015

a) Áp dụng định lí Pi-Ta-go vào ΔABC :

      \(AC^2=BC^2-AB^2=10^2-6^2=64\)

\(AC=\sqrt{64}=8\left(cm\right)\).

b) ΔABK có BE vừa là đường cao vừa là trung tuyến nên tam giác ABk là tam giác cân.( nếu bạn chưa học tính chất này thì  xét 2 tam giác BEA và BEK cũng được, điều kiện xét đã có sẵn r).

 

c) Xét ΔABD và ΔKBD có:

      AB=AK(ΔABK cân tại B)

Góc ABD=KBD(gt)

     BD cạnh chung

Vậy ΔABD=ΔKBD(c.g.c)

=> Góc BAD=BKD=90o(hai góc tương ứng)

hay DK vuông góc với BC

d) Vì DK vuông góc với BC

        AH vuông góc với BC 

nên DK//AH => Góc DKA=HAK(so le trong) (1)

Vì ΔABD=KBD(cmt) => AD=KD(2 cạnh tương ứng) hay tam giác ADK cân tại K

=> Góc DKA=DAK hay DKA=CAK (2)

Từ (1) và (2) suy ra Góc HAK=CAK

Hay AK là tia phân giác của góc HAC.

 

22 tháng 6 2019

đề bài của bạn hình như ko đúng lắm. tưởng phải cân ở đỉnh A chứ

24 tháng 6 2020

Bài làm:

a, Áp dụng đl Pythagoras vào ∆ABC vuông tại A có

BC² = AB² + AC²

=> BC² = 6² + 8² 

=> BC² = 100

=> BC = √100 = 10(cm) (do BC> 0)

b, Ta có DH ⊥ BC (gt)

=> BHD = CHD = 90°

Xét ∆ABD vuông tại A và ∆HBD vuông tại H có

BD : chung

ABD = CBD (BD là pg ABC - gt)

=>∆ABD = ∆HBD (ch-gn)

=> AD = DH (2 cạnh t/ứ)

c, Xét ∆DHC vuông tại H có

DC > HD (ch > cgv)

Mà HD = AD (cmt)

=> DC > AD

d, Ta có BAC +KAC = 180° (kề bù)

=> 90° + KAC = 180°

=> KAC = 90°

Lại có : KB = BC (gt)

AB = BH (∆ABD = ∆HBD)

=> KB - AB = BC - BH

=> AK = CH

Xét ∆AKD vuông tại A và ∆HCD vuông tại H có

AK = CH (cmt)

AD = HD (cmt)

=>∆AKD = ∆HCD (2 cgv)

=> ADK = HDC (2 góc t/ứ)

Mặt khác ta có

ADH + HDC = 180° (kề bù)

=> ADK + ADH = 180°

=> KDH = 180°

=> K,D,H thẳng hàng

24 tháng 6 2020

Bạn ơi bạn thử vẽ lại hình đi mình thấy sai rồi nhé