K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\Omega=\left\{\left(1;1\right);\left(1;2\right);\left(1;3\right);...;\left(6;6\right)\right\}\)

=>\(n\left(\Omega\right)=6\cdot6=36\)

A: "Tổng số chấm của hai lần gieo bằng 7"

=>A={(2;5);(5;2);(1;6);(6;1);(3;4);(4;3)}

=>n(A)=6

Xác suất của biến cố A là \(\dfrac{6}{36}=\dfrac{1}{6}\)

27 tháng 4

Vì gieo một con xúc xắc cân đối và đồng chất 2 lần và mỗi lần có 6 kết quả đánh số chấm từ 1 - 6 nên số kết quả có thể là :
6 . 6 = 36 (kết quả)
Các kết quả thuận lợi cho biến cố A :"Tổng số chấm của 2 lần gieo bằng 7" là :
- "Lần gieo thứ nhất hiện 1 chấm và thứ hai hiện 6 chấm"
- "Lần gieo thứ nhất hiện 2 chấm và thứ hai hiện 5 chấm"
- "Lần gieo thứ nhất hiện 3 chấm và thứ hai hiện 4 chấm"
- "Lần gieo thứ nhất hiện 4 chấm và thứ hai hiện 3 chấm"
- "Lần gieo thứ nhất hiện 5 chấm và thứ hai hiện 2 chấm"
- "Lần gieo thứ nhất hiện 6 chấm và thứ hai hiện 1 chấm"
=> Có 6 kết quả thuận lợi cho biến cố A
Xác suất của biến cố A là : \(\frac{6}{36}=\frac16\)
Vậy xác suất của biến cố A là 1/6

8 tháng 5 2023

Câu 1: Gieo 1 đồng tiền cân đối và đồng chất 2 lần

\(\Rightarrow n\left(\Omega\right)=2^2=4\)

Gọi A là biến cố cả hai lần xuất hiện mặt sấp
\(\Rightarrow A=\left\{SS\right\}\Rightarrow n\left(A\right)=1\)

Vậy \(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{1}{4}\)

Chọn B

Câu 2: Số phần tử không gian mẫu: \(n\left(\Omega\right)=6\)

Gọi biến cố A: “Số chấm là số nguyên tố xuất hiện”

\(A=\left\{2;3;5\right\}\)

\(\Rightarrow n\left(A\right)=3\)

Vậy \(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{3}{6}=\dfrac{1}{2}\)

Chọn A

NV
8 tháng 5 2023

1D

2A

a: n(omega)=36

A={(1;5); (2;5); (3;5); (4;5); (5;5); (6;5)}

=>n(A)=6

=>P(A)=6/36=1/6

b: B={(1;6); (2;5); (3;4); (4;3); (5;2); (6;1)}

=>n(B)=6

=>P(B)=1/6

d: D={(2;1); (2;2); ...; (2;6); (3;1); (3;2); ...;(3;6);(5;1); (5;2);...;(5;6)}

=>P(D)=18/36=1/2

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Kết quả của phép thử là một cặp số (a;b) trong đó a, b lần lượt là số chấm xuất hiện trên con xúc xắc thứ nhất và thứ hai, suy ra:

\(B = \left\{ {(1;1),(2;2),(3;3),(4;4),(5;5),(6;6)} \right\}\)

\(C = \left\{ {(2;1),(4;2),(6;3)} \right\}\)

b) Từ tập hợp mô tả biến cố ở câu a) ta có:

Có 6 kết quả thuận lợi cho biến  cố B

Có 3 kết quả thuận lợi cho biến cố C

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số kết quả có thể xảy ra của phép thử là \(n(\Omega ) = {6^2}\)

a) Gọi biến cố “Tổng số chấm xuất hiện lớn hơn hoặc bằng 10” là biến cố đối của biến cố “Tổng số chấm xuất hiện nhỏ hơn 10”

xảy ra khi số chấm xuất hiện là 5 hoặc 6. Số kết quả thuận lợi cho là \(n(A) = {2^2}\)

Xác suất của biến cố là \(P(A) = \frac{{{2^2}}}{{{6^2}}} = \frac{1}{9}\)

Vậy xác suất của biến cố “Tổng số chấm xuất hiện nhỏ hơn 10” là \(1 - \frac{1}{9} = \frac{8}{9}\)

b) Gọi biến cố A: “Tích số chấm xuất hiện không chia hết cho 3” là biến cố đối của biến cố ‘“Tích số chấm xuất hiện chia hết cho 3”

xảy ra khi mặt xuất hiện trên hai con xúc xắc đều xuất hiện số chấm không chia hết cho 3. Số kết quả thuận lợi cho là: \(n(A) = {4^2}\)

Xác suất của biến cố là: \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{{4^2}}}{{{6^2}}} = \frac{4}{9}\)

Vậy xác suất của biến cố “Tích số chấm xuất hiện chia hết cho 3” là \(1 - \frac{4}{9} = \frac{5}{9}\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

+) Không gian mẫu trong trò chơi trên là tập hợp \(\Omega  = {\rm{ }}\left\{ {\left( {i,j} \right){\rm{ | }}i,{\rm{ }}j{\rm{ }} = {\rm{ }}1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}5,{\rm{ }}6} \right\}\) trong đó (i,j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”. Vậy \(n\left( \Omega  \right) = 36\)

+) Gọi A là biến cố “Số chấm trong hai lần gieo đều là số nguyên tố”.

 Ta có các kết quả thuận lợi cho biến cố A là: (2 ; 2) (2;3) (2;5) (3; 2) (3;3) (3;5) (5;2) (5;3) (5;5). Vậy \(n\left( A \right) = 9\)

+) Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{9}{{36}} = \frac{1}{4}\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega  \right) = {6^3}\)

a) Gọi là biến cố “Tổng số chấm xuất hiện nhỏ hơn 5”, ta có biến cố đối của là \(\overline A \): “Tổng số chấm xuất hiện lớn hơn hoặc bằng 5”

Số kết quả thuận lợi cho \(\overline A \) là \(n\left( {\overline A } \right) = 1 + C_3^1 = 4\)

Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{4}{{{6^3}}} = \frac{1}{{54}}\)

Vậy xác suất của biến cố là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{{54}} = \frac{{53}}{{54}}\)

b) Gọi là biến cố “Tích số chấm xuất hiện chia hết cho 5”, ta có biến cố đối của là \(\overline A \): “Tích số chấm xuất hiện không chia hết cho 5”

\(\overline A \) xảy ra khi không có mặt của xúc xắc nào xuất hiện 5 chấm

Số kết quả thuận lợi cho \(\overline A \) là \(n\left( {\overline A } \right) = {5^3}\)

Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{{{5^3}}}{{{6^3}}} = \frac{{125}}{{216}}\)

Vậy xác suất của biến cố là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{125}}{{216}} = \frac{{91}}{{216}}\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Không gian mẫu trong trò chơi trên là tập hợp \(\Omega  = \left\{ {(i,j)|i,j = 1,2,3,4,5,6} \right\}\)trong đó (i,j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”. Vậy \(n(\Omega ) = \;36.\)

a) Gọi A là biến cố “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”.

Các kết quả có lợi cho A là: (4; 6) (5;5) (5;6) (6; 4) (6;5) (6;6). Vậy \(n(A) = \;6.\)

Vậy xác suất của biến cố A là \(P(A) = \;\frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{36}} = \frac{1}{6}.\)

 b) Gọi  B là biến cố “Mặt 1 chấm xuất hiện ít nhất một lần”.

Các kết quả có lợi cho B là: (1; 1) (1 : 2) (1 : 3) (1; 4) (1;5) (1; 6) (2 ; 1) (3;1) (4; 1) (5;1) (6;1). Vậy \(n(B) = \;11.\)

Vậy xác suất của biến cố B là: \(P(B) = \;\frac{{n(B)}}{{n(\Omega )}} = \frac{{11}}{{36}}.\)

27 tháng 9 2023

Tổng số chấm của hai con xúc sắc lớn nhất có thể là: 6+6=12 (chấm)

Vậy tất cả các kết quả gieo hai con xúc sắc đều là kết quả thuận lợi đối với biến cố D. Số kết quả thuận lợi: 6 x 6 = 36 (kết quả)

Và không có kết quả nào thuận lợi với biến cố E (không có TH nào tổng số chấm hai con xúc sắc gieo ra được bằng 13)

a: A={(1;1); (1;2); ...; (1;6)}

=>n(A)=6

P(A)=6/36=1/6

b: B={(1;4); (2;3); (3;2); (4;1)}

=>P(B)=4/36=1/9

c: C={(3;1); (4;2); (5;3); (6;4)}

=>P(C)=4/36=1/9

d: D={(1;3); (1;5); (1;1); (3;5); (3;1); (3;3); (5;3); (5;1); (5;5)}

=>P(D)=9/36=1/4