Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)

4m2+m=5n2+n
{=}5m2+m=5n2+n+m2
{=}5(m2-n2)+(m-n)=m2
{=}(m-n)(5m+5n+1)=m2

Ta có :
\(4m^2+m=5n^2+n\)
\(\Leftrightarrow5m^2+m=5n^2+n+m^2\)
\(\Leftrightarrow5\left(m^2-n^2\right)+\left(m-n\right)=m^2\)
\(\Leftrightarrow\left(m-n\right)\left(5m+5n+1\right)=m^2\)
\(\Rightarrow\hept{\begin{cases}m-n⋮d\\5m+5n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}m^2=\left(m-n\right)\left(5m+5n+1\right)⋮d^2\\5\left(m-n\right)\left(5m+5n+1\right)⋮d\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}m⋮d\\10m+1⋮d\end{cases}\Rightarrow1⋮d\Rightarrow d=1}\)
Vậy \(m-n,5m+5n+1\) nguyên tố cùng nhau . Mà tích của chúng là một số chính phương nên bản thân \(m-n,5m+5n+1\) cũng là số chính phương ( đpcm)
Chúc bạn học tốt !!!

b, vì a và b là 2 stn liên tiếp nên a=b+1 hoặc b=a+1
cho b=a+1
\(A=a^2+b^2+c^2=a^2+b^2+a^2b^2=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)
\(=a^2+\left(a+1\right)^2\left(a^2+1\right)=a^2+\left(a^2+2a+1\right)\left(a^2+1\right)\)
\(=a^2+2a\left(a^2+1\right)+\left(a^2+1\right)^2=\left(a^2+a+1\right)^2\)
\(\Rightarrow\sqrt{A}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1=a\left(a+1\right)+1=ab+1\)
vì a b là 2 stn liên tiếp nên sẽ có 1 số chẵn\(\Rightarrow ab\)chẵn \(\Rightarrow ab+1\)lẻ \(\Rightarrow\sqrt{A}\)lẻ (đpcm)
Làm cả câu a đi nhé! Nếu bạn làm được cả câu a thì mình k! ^_^ *_*

Hiện câu 1 mih chưa giải đc
Đây là đ.a câu 2
\(\frac{4c}{4c+57}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(Cosi) (1)
Từ đề bài \(\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}\le1-\frac{57}{4c+57}\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}+\frac{57}{4c+57}\le1\) (*)
Từ (*) \(\Rightarrow1-\frac{1}{a+1}=\frac{a}{a+1}\ge\frac{35}{35+2b}+\frac{57}{4c+57}\ge2\sqrt{\frac{35.57}{\left(35+2b\right)\left(4c+57\right)}}\)(2)
Từ (*) \(\Rightarrow1-\frac{35}{35+2b}=\frac{2b}{35+2b}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(3)
Nhân vế với vế của (1);(2);(3) lại ta được :
\(\frac{4c.a.2b}{\left(4c+57\right)\left(a+1\right)\left(35+2b\right)}\ge8\sqrt{\frac{57.35.35.57}{\left(4c+57\right)^2\left(a+1\right)^2\left(35+2b\right)^2}}\)
\(\Leftrightarrow abc\ge35.57=1995\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{a+1}=\frac{35}{35+2b}=\frac{57}{4c+57}\\abc=1995\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{2b}{35}=\frac{4c}{57}\\abc=1995\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=35\\c=\frac{57}{2}\end{cases}}\) Vậy \(MinA=1995\) tại \(a=2;b=35;c=\frac{57}{2}\)

Đặt \(M=2+2\sqrt{12n^2+1}\)
Để M là số nguyên thì 12n2 + 1 là số chính phương lẻ
Đặt 12n2 + 1 = (2k -1)2 (k \(\in\) N)
<=> 12n2 + 1 = 4k2 - 4k +1
<=> 12n2 = 4k2 - 4k
<=> 3n2 = k(k - 1)
=> k(k - 1) chia hết cho 3 => k chia hết cho 3 hoặc k - 1 chia hết cho 3
TH1 : k ⋮ 3 => n2 =(\(\frac{k}{3}\)).(k - 1) Mà (\(\frac{k}{3}\) ; k-1 )= 1 nên đặt \(\frac{k}{3}\) = x2 => k = 3x2
và đặt k - 1 = y2 => k = y2 +1
=> 3x2 = y2 + 1 = 2 ( mod 3)
Vô lý vì 1 số chính phương chia cho 3 có số dư là 0 hoặc 1
TH2 : k - 1 ⋮ 3: ta có :
=> n2 = \(\frac{k\left(k-1\right)}{3}\) Mà ( k; (\(\frac{k-1}{3}\)) =1 nên đặt k = z2
=> M = 2 + 2(2k - 1) = 4k = 4z2 =(2z)2 là 1 số chính phương
=> M là một số chính phương ( đpcm )
\(2+2\sqrt{12n^2+1}\in Z^+\Rightarrow2\sqrt{12n^2+1}\in Z^+\Rightarrow\sqrt{12n^2+1}\in Q\)
\(\Rightarrow\sqrt{12n^2+1}=m\in Z^+\Rightarrow12n^2=m^2-1⋮4\Rightarrow m=2k+1,k\in Z\)
\(12n^2=\left(2k+1\right)^2-1=4k\left(k+1\right)\Rightarrow3n^2=k\left(k+1\right)⋮3\)hoặc \(k+1⋮3\)
TH1: \(k=3q,q\in Z\Rightarrow3n^2=3q\left(q+1\right)\Rightarrow n^2=q\left(q+1\right)\)
Vì \(\left(q,3q+1\right)=1\Rightarrow\hept{\begin{cases}q=a^2\\3q+1=b^2\end{cases}\Rightarrow3q^2+1=b^2}\)
Ta có: \(2+2\sqrt{12n^2+1}=2+2m=2+2\left(2k+1\right)=4+4.3q=4+12q^2=4b^2\)(CMT)
Ta có đpcm
TH2(tương tự):\(k=3q+1\)

4.Nếu\(|x-1|=0\)
thì x = 1.=> lx+2l = 3 và lx+3l = 4.
=>lx-1l+lx+2l+lx+3l=0+3+4=7.
Nếu \(|x+2|=0\)
thì x=-2 =>lx-1l=3 và lx+3l=1.
=>lx-1l+lx+2l+lx+3l=0+3+1=4.
Nếu \(|x+3|=0\)
thì x=-3 =>lx-1l=4 và lx+2l=1.
=>lx-1l+lx+2l+lx+3l=5.
Vậy \(Min_{\text{lx-1l+lx+2l+lx+3l}}=4\).

a) Ta có: (n2 + n - 1)2 - 1
= ( n2 + n - 1 + 1)(n2 + n - 1 - 1)
= (n2 + n)(n2 + n - 2)
= n(n + 1)(n2 + 2n - n - 2)
= n(n+ 1)[n(n + 2) - (n + 2)]
= n(n + 1)(n - 1)(n + 2)
Do n(n + 1)(n - 1)(n + 2) là tích của 4 số nguyên liên tiếp
nên 1 thừa số chia hết cho 2
1 thừa số chia hết cho 3
1 thừa số chia hết cho 4
mà (2, 3, 4) = 1
=> n(n + 1)(n - 1)(n + 2) \(⋮\)2.3.4 = 24
=> (n2 + n - 1)2 - 1 \(⋮\)24 \(\forall\)n \(\in\)Z
b) Do n chẵn => n có dạng 2k (k \(\in\)Z)
Khi đó, ta có: n3 + 6n2 + 8n
= (2k)3 + 6.(2k)2 + 8.2k
= 8k3 + 24k2 + 16k
= 8k(k2 + 3k + 2)
= 8k(k2 + 2k + k + 2)
= 8k[k(k + 2) + (k + 2)]
= 8k(k + 1)(k + 2)
Do k(k + 1)(k + 2) là tích của 3 số nguyên liên tiếp
nên 1 thừa số chia hết cho 2
1 thừa số chia hết cho 3
=> k(k + 1)(k + 2) \(⋮\)2.3 = 6
=> 8k(k + 1)(k + 2) \(⋮\)8.6 = 48
Vậy n3 + 6n2 + 8n \(⋮\)48 \(\forall\)n là số chẵn
Giả sử m,n là 2 số khác nhau suy ra:
\((m+n)^2-1=(m+n+1)(m+n-1)\) chia hết cho m+n+1
\(\rArr2(m^2+n^2)-1-((m+n)^2-1)\) chia hết cho m+n+1
\(\rArr\) \((m-n)^2\) chia hết cho m+n+1
Mà m+n+1 là số nguyên tố nên:
\(\left\vert m-n\right\vert\) chia hết cho m+n+1
Không làm mất tính tổng quát, giả sử m > n
\(\rArr(m-n)\) chia hết cho m+n+1
\(\rArr m-n\ge m+n+1\)
\(\rArr2n+1\le0\)
Vô lí do n nguyên dương nên 2n+1>1
Vậy giả sử sai nên suy ra được m=n hay m.n=m.m=\(m^2\) là 1 số chính phương(đpcm)
Like với