
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(\frac{x-1}{6}=\frac{2x+3}{7}\)
\(\Leftrightarrow7\left(x-1\right)=6\left(2x+3\right)\)
\(\Leftrightarrow7x-7=12x+18\)
\(\Leftrightarrow5x+18=-7\)
\(\Leftrightarrow5x=-25\)
\(\Leftrightarrow x=-5\)
b) \(\left(2x^2-\frac{1}{2}x\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{2}\right)\left(x^2+1\right)=0\)
Vì \(x^2+1>0\)nên \(\orbr{\begin{cases}x=0\\2x-\frac{1}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)

10 - { [ ( x : 3 + 17 ) : 10 + 3 : 24 ] : 10 } = 5
[ ( x : 3 + 17 ) : 10 + 3 : 24 ] : 10 = 10 - 5 = 5
( x : 3 + 17 ) : 10 + 3 : 24 = 5 x 10
( x : 3 + 17 ) : 10 + 48 = 50
( x : 3 + 17 ) : 10 = 50 - 48
( x : 3 + 17 ) : 10 = 2
x : 3 + 17 = 2 x 10
x : 3 + 17 = 20
x : 3 = 20 - 17 = 3
x = 3 x 3 = 9
a) [(2x+14) : 4 - 3] : 2 = 1
(2x+14) : 4 - 3 = 1/2
(2x+14) : 4 = 1/2 + 3
(2x+14) : 4 = 7/2
2x+14 = 7/2 . 1/4
2x = 7/8 - 1/4
2x = 5/8
x= 5/8.1/2
x= 5/16

Th1:x^2+/2x-2/=x+x^2-1
/2x-2/=x+x^2-1-x^2
/2x-2/=x-1+x^2-x^2
/2x-2/=x-1
+)nếu x-1=2x-2 thì
x-2x=-2+1
-x=-1
x=1
+) nếu x-1=-(2x-2) thì
x+2x=2+1
3x=3
x=1
Vậy th1 x=1
Th2:-(x^2+/2x-2/)=x+x^2-1
Tương tự

(x+1/2).(2/3-2x)=0
=> x+1/2=0 hoặc 2/3-2x=0
+) x+1/2=0 +) 2/3-2x=0
X= - 1/2 2x=2/3
x=1/3
Vậy x ...............

a) tính bình thường thôi
b)\(\left(3x-4\right)\times\left(x-1\right)^3=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-4=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=1\end{cases}}\)
c) \(2^{2x-1}:4=8^3\)
\(\Leftrightarrow2^{2x-1}=2048\Leftrightarrow2^{2x-1}=2^{11}\Leftrightarrow2x-1=11\Leftrightarrow x=6\)
d) \(x^{17}=x\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
e) \(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-5=1\\x-5=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\x=6\\x=4\end{cases}}\)
vậy........
a) (x : 23 + 45) . 37 - 22 = 24.105
=> (x : 23 + 45).37 - 22 = 1680
=> (x : 23 + 45).37 = 1702
=> x : 23 + 45 = 46
=> x : 23 = 1
=> x = 23
b) (3x - 4).(x - 1)3 = 0
=> \(\orbr{\begin{cases}3x-4=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=1\end{cases}}\)
Vậy \(x\in\left\{\frac{4}{3};1\right\}\)
c) 22x - 1 : 4 = 83
=> 22x - 1 : 22 = (23)3
=> 22x - 1 : 22 = 29
=> 22x - 1 = 211
=> 2x - 1 = 11
=> 2x = 12
=> x = 6
d) x17 = x
=> x17 - x = 0
=> x(x16 - 1) = 0
=> \(\orbr{\begin{cases}x=0\\x^{16}-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^{16}=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậy \(x\in\left\{0;1;-1\right\}\)
e) (x - 5)4 = (x - 5)6
=> (x - 5)6 - (x - 5)4 = 0
=> (x - 5)4[(x - 5)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1^2\end{cases}}\Rightarrow\orbr{\begin{cases}x-5=0\\x-5=\pm1\end{cases}}\Rightarrow x-5\in\left\{0;1;-1\right\}\)
=> \(x\in\left\{5;6;4\right\}\)

Đề bài : Tìm số nguyên x.
|2x-1|+|2+x|+|x+3|=5(x-1)
2x-1+2+x+x+3=5x-5
2x+x+x-5x-1+2+3=-5
-x-1+5=-5
-x-1=(-5)-5
-x-1=-10
-x=(-10)+1
-x=-9
x=9
Vậy x=9.
Không chắc!
\(\left|2x-1\right|+\left|2+x\right|+\left|x+3\right|=5.\left(x-1\right)\left(1\right)\)
+)Ta có VT(1):\(\left|2x-1\right|\ge0;\left|2+x\right|\ge0;\left|x+3\right|\ge0\)
\(\Rightarrow\left|2x-1\right|+\left|2+x\right|+\left|x+3\right|\ge0\)
Mà VT(1)=VP(1)
\(\Rightarrow5.\left(x-1\right)\ge0\)
\(\Rightarrow x-1\ge0\)
\(\Rightarrow x\ge1\)
+)Ta lại có:\(x\ge1\Rightarrow2x-1\ge1\Rightarrow\left|2x-1\right|=2x-1\)(2)
\(x\ge1\Rightarrow2+x\ge3\Rightarrow\left|2+x\right|=2+x\)(3)
\(x\ge1\Rightarrow x+3\ge4\Rightarrow\left|x+3\right|=x+3\)(4)
+)Từ (2);(3) và (4) thì (1) trở thành:
2x-1+2+x+x+3=5.(x-1)
2x+x+x+2-1+3=5.(x-1)
4x+4 =5.(x-1)
4x+4 =5x-5
4+5 =5x-4x
9 =x
\(\Rightarrow\)x =9
Vậy x=9
Chúc bn học tốt
Ta có: \(\dfrac{1}{4}-\left(2x+\dfrac{1}{2}\right)^2=0\)
=>\(\left(2x+\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
=>\(\left[{}\begin{matrix}2x+\dfrac{1}{2}=\dfrac{1}{2}\\2x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=0\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
14−(2x+12)2=014-(2x+12)2=0
⇒(2x+12)2=14−0⇒(2x+12)2=14-0
⇒(2x+12)2=14⇒(2x+12)2=14
⇒(2x+12)2=(12)2⇒(2x+12)2=(12)2 hoặc 2x+12=(−12)22x+12=(-12)2
⇒2x+12=12⇒2x+12=12 hoặc 2x+12=−122x+12=-12
⇒2x=12−12⇒2x=12-12 hoặc 2x=−12−122x=-12-12
⇒2x=0⇒2x=0 hoặc 2x=−12x=-1
⇒x=0:2⇒x=0:2 hoặc x=−1:2x=-1:2
⇒x=0⇒x=0 hoặc x=−12x=-12
Vậy x∈{0;−12}