
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu a:
A = \(\frac{1}{2\times3}\) + \(\frac{1}{3\times4}\) + \(\frac{1}{4\times5}\) + \(\frac{1}{5\times6}\) + \(\frac{1}{6\times7}\) + \(\frac{1}{7\times8}\)
A = \(\frac12-\frac13\) + \(\frac13-\frac14\) + \(\frac14-\frac15\) + \(\frac15-\frac16\) + \(\frac16-\frac17\) + \(\frac17-\frac18\)
A = \(\frac12-\frac18\)
A = \(\frac38\)
Câu b:
A = \(\frac12\) + \(\frac14\) + \(\frac18\) + \(\frac{1}{16}\) + \(\frac{1}{32}\) + \(\frac{1}{64}\) + \(\frac{1}{128}\) + \(\frac{1}{256}\)
2 x A = 1 + \(\frac12\) + \(\frac14\) + \(\frac18\) + \(\frac{1}{16}\) + \(\frac{1}{32}\) + \(\frac{1}{64}\) + \(\frac{1}{128}\)
2 x A - A = 1 + \(\frac12\) +\(\frac14\) + \(\frac18\) + \(\frac{1}{16}\) + \(\frac{1}{32}\) + \(\frac{1}{64}\) + \(\frac{1}{128}\) - \(\frac12-\frac14\) -...-\(\frac{1}{128}\) -\(\frac{1}{256}\)
A x (2 - 1) = (1 - \(\frac{1}{256}\)) + (\(\frac12\)-\(\frac12\)) +...+(\(\frac{1}{128}\) - \(\frac{1}{128}\))
A = 1 - \(\frac{1}{256}\) + 0 + 0+...+ 0
A = \(\frac{255}{256}\)

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)
\(=1-\frac{1}{64}\)
\(=\frac{63}{64}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{32}-\frac{1}{64}\)
\(=1-\frac{1}{64}\)
\(=\frac{64}{64}-\frac{1}{64}=\frac{63}{64}\)

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}\)
\(=\frac{126}{128}=\frac{63}{64}\)

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
\(=\frac{1+1+1+1+1+1+1}{2}\)
\(=\frac{7}{2}\)
Đặt \(T=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(T=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{64}-\frac{1}{128}\right)\)
\(\Rightarrow T=1-\frac{1}{128}=\frac{127}{128}\)

2y=\(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
2y-y=1-\(\frac{1}{256}\)
y=\(\frac{255}{256}\)

ta có:A=1/2+1/2^2+1/2^3+...+1/2^6+1/2^7 (1)
2A= 2.(1/2+1/2^2+1/2^3+...+1/2^6+1/2^7)
=1+1/2+1/2^2+....+1/2^6+1/2^7 (2)
lấy (2) trừ (1) vế với vế ta được:
2A-A=(1+1/2+1/2^2+....+1/2^6+1/2^7)-(1/2+1/2^2+...+1/2^6+1/2^7)
A=1-1/2^7
VẬY A=1-1/2^7

b) 1/3+1/3^2+1/3^3+1/3^4+1/3^5 (goi tong bang M)
3M=1+1/3+1/3^2+1/3^3+1/3^4
3M-M=1-1/3^5
2M=242/243
M=242/243*1/2=121/243

\(A\cdot2=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{256}\right)\cdot2\)
\(=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{128}\)
\(A\cdot2-A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{128}-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)\)
\(A=1-\frac{1}{256}=\frac{255}{256}\)
\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^7}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)
\(A=1-\frac{1}{2^8}\)
\(A=\frac{2^8-1}{2^8}\)
\(A=\frac{255}{256}\)
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 = 32/64 + 16/64 + 8/64 + 4/64 + 2/64 + 1/64 = 63/64
A = \(\frac12\) + \(\frac14\) + \(\frac18\) + \(\frac{1}{16}\) + \(\frac{1}{32}\) + \(\frac{1}{64}\)
2 x A = 1 + \(\frac12\) + \(\frac14\) + \(\frac18\) + \(\frac{1}{16}\) + \(\frac{1}{32}\)
2 x A - A = 1 + \(\frac12\) + \(\frac14\) + \(\frac18\) + \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac12\) - \(\frac14\) - \(\frac18\) - \(\frac{1}{16}\) - \(\frac{1}{32}\) - \(\frac{1}{64}\)
A x (2 - 1) = (1 - \(\frac{1}{64}\))+(\(\frac12\)-\(\frac12\))+(\(\frac14\)-\(\frac14\))+(\(\frac18\)-\(\frac18\))+(\(\frac{1}{16}\)-\(\frac{1}{16}\))+(\(\frac{1}{32}\) -\(\frac{1}{32}\))
A = \(\frac{63}{64}\) + 0 + 0 +..+0
A = \(\frac{63}{64}\)