Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn D
Chọn ngẫu nhiên 4 viên bi từ hộp có 12 viên bi thì có
Số cách lấy để được đủ ba màu là
Xác suất để 4 viên bi lấy ra có đủ ba màu bằng

Đáp án A
Lấy ngẫu nhiên 3 viên bi trong 12 viên bi có
Gọi X là biến cố “3 bi được chọn có đủ 3 màu”
Lấy 1 viên bi màu đỏ trong 3 bi đỏ có 3 cách.
Lấy 1 viên bi màu xanh trong 4 bi xanh có 4 cách.
Lấy 1 viên bi màu vàng trong 5 bi vàng có 5 cách.
Suy ra số kết quả thuận lợi cho biến cố X là
n(X) = 3.4.5 = 60

Không gian mẫu là số sách lấy tùy ý 2 viên từ hộp chứa 12 viên bi.
Suy ra số phần tử của không gian mẫu là .
Gọi A là biến cố 2 viên bi được lấy vừa khác màu vừa khác số .
● Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi đỏ là 4.4=16 cách (do số bi đỏ ít hơn nên ta lấy trước, có 4 cách lấy bi đỏ. Tiếp tục lấy bi xanh nhưng không lấy viên trùng với số của bi đỏ nên có 4 cách lấy bi xanh).
● Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi vàng là 3.4=12cách.
● Số cách lấy 2 viên bi gồm: 1 bi đỏ và 1 bi vàng là 3.3=9 cách.
Suy ra số phần tử của biến cố A là 16+12+9=37.
Vậy xác suất cần tính .
Chọn B.

Ta có, số phần tử của không gian mẫu n ( Ω ) = C 10 2
Gọi các biến cố: D: “lấy được 2 viên đỏ” ; X: “lấy được 2 viên xanh” ;
V: “lấy được 2 viên vàng”
Ta có D, X, V là các biến cố đôi một xung khắc và C = D ∪ X ∪ V
P ( C ) = P ( D ) + P ( X ) + P ( V ) = C 4 2 C 10 2 + C 3 2 C 10 2 + C 2 2 C 10 2 = 2 9
Chọn đáp án B

Gọi A là biến cố: “trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ.”
Trong hộp có tất cả: 5+ 15 + 35 = 55 viên bi
- Số phần tử của không gian mẫu: Ω = C 55 7 .
- A ¯ là biến cố: “trong số 7 viên bi được lấy ra không có viên bi màu đỏ nào.”
=> n A ¯ = C 20 7 .
Vì A và A ¯ là hai biến cố đối nên: n A = Ω − n A ¯ = C 55 7 − C 20 7 .
Xác suất để trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ là P A = C 55 7 − C 20 7 C 55 7 .
Chọn đáp án B.

Không gian mẫu: \(C_{14}^5\)
Các cách chọn thỏa mãn gồm có: (1 đỏ 1 vàng 3 xanh), (2 đỏ 1 vàng 2 xanh), (1 đỏ 2 vàng 2 xanh)
Số cách: \(C_5^1C_6^1C_3^3+C_5^2C_6^1C_3^2+C_5^1C_6^2C_3^2\)
Xác suất: \(P=\dfrac{C_5^1C_6^1C_3^3+C_5^2C_6^1C_3^2+C_5^1C_6^2C_3^2}{C_{14}^5}=...\)
Quảng cáo trắng trợn ghê tar :3 Cơ mà có mod Lâm là đủ rồi á THẦY :)
Ta có \(n\left(\Omega\right)=C_{12}^4\)
Gọi A là biến cố: "Có ít nhất 3 viên bi màu xanh trong 4 viên bi lấy ra."
TH1: Có đúng 3 viên bi xanh.
Khi đó có \(C_4^3\cdot8\) cách.
TH2: Cả 4 viên đều màu xanh.
Khi đó có 1 cách duy nhất.
\(\rArr n\left(A\right)=8\cdot C_4^3+1=33\)
\(\rArr P\left(A\right)=\frac{n\left(A\right)}{n\left(\Omega\right)}=\frac{33}{C_{12}^4}=\frac{1}{15}\)
Gọi A là biến cố "Có ít nhất 3 viên bi màu xanh trong 4 viên bi được lấy ra"
=>Sẽ có 2 trường hợp là 3 viên xanh hoặc 4 viên xanh
Nếu là 3 viên xanh thì sẽ có \(C^3_4\cdot8=32\left(cách\right)\)
Nếu là 4 viên xanh thì sẽ có \(C^4_4=1\left(cách\right)\)
=>n(A)=32+1=33
\(\Omega=C^4_{4+5+3}=C^4_{13}=715\)
Xác suất của biến cố A là \(\dfrac{33}{715}=\dfrac{3}{65}\)