K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3

Ta có:

\(\dfrac{1}{101}>\dfrac{1}{200}\)

\(\dfrac{1}{102}>\dfrac{1}{200}\)

\(\dfrac{1}{103}>\dfrac{1}{200}\)

...

\(\dfrac{1}{200}=\dfrac{1}{200}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{100}{200}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{1}{2}\)

22 tháng 3

\(\frac{1}{101}+\frac{1}{102}+\ldots+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\cdots+\frac{1}{200}\)

\(\frac{1}{200}+\frac{1}{200}+\cdots+\frac{1}{200}=\frac{\left(200-101\right):1+1}{200}\) =\(\frac{100}{200}=\frac12\)

\(\frac{1}{101}+\frac{1}{102}+\cdots+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\cdots+\frac{1}{200}=\frac12\)

nên\(\frac{1}{101}+\frac{1}{102}+\ldots+\frac{1}{200}<\frac12\)

vậy\(\frac{1}{101}+\frac{1}{102}+\ldots+\frac{1}{200}<\frac12\)

Ta có : \(\frac{1}{101}>\frac{1}{200}\)

\(\frac{1}{102}>\frac{1}{200}\)

\(...>\frac{1}{200}\)

Mà \(\frac{1}{200}=\frac{1}{200}\)

Suy ra : \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)

Mời nhân tài giải nốt.

14 tháng 2 2016

j mà  nhìu zu zậy làm bao giờ mới xong

14 tháng 2 2016

Ủng hộ mk đi các bạn
 

10 tháng 5 2019

Ta có:

\(\frac{1}{101}\)>\(\frac{1}{200}\)

\(\frac{1}{102}\)>\(\frac{1}{200}\)

\(\frac{1}{103}\)>\(\frac{1}{200}\)

...

\(\frac{1}{200}\)=\(\frac{1}{200}\)

\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{200}\)+\(\frac{1}{200}\)+..+\(\frac{1}{200}\)(100 số hạng)=\(\frac{1}{2}\)

\(\Rightarrow\)\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{2}\)

12 tháng 3 2017

Ta có : 

\(\frac{1}{101}>\frac{1}{200}\)

\(\frac{1}{102}>\frac{1}{200}\)

\(\frac{1}{103}>\frac{1}{200}\)

\(..........\)

\(\frac{1}{200}=\frac{1}{200}\)

Cộng vế với vế ta được :

\(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\) (có 100 số \(\frac{1}{200}\) )\(=\frac{100}{200}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+......+\frac{1}{200}>\frac{1}{2}\) (đpcm)

12 tháng 3 2017

Ta có:

1/101>1/200

1/102>1/200

...

1/199>1/200

=>1/101+1/102+...+1/103>1/200+1/200+...+1/200(100 số 1/200)

                                     =1/200.100=1/2

Vậy 1/101+1/102+1/103+...+1/200>1/2

7 tháng 5 2017

1/2=1/200+1/200+1/200+.....+1/200 (có 100 số )

1/101+1/102+....+1/200(có 100 số )

Vì 1/101>1/200

1/102>1/100

......

1/199>1/200

1/200=1/200

=>1/101+1/102+.....+1/200>1/200+1/200+...+1/200 có 100 số

=>1/101+1/102+.....+1/200>1/2

7 tháng 5 2017

Ta thấy \(\frac{1}{101}>\frac{1}{200};\frac{1}{102}>\frac{1}{200};\frac{1}{103}>\frac{1}{200};....;\frac{1}{200}=\frac{1}{200}\)

Mà dãy \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}\)có 100 phân số nên : 

\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)( có 100 phân số \(\frac{1}{200}\))

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100=\frac{1.}{2}\left(đpcm\right)\)

18 tháng 6 2017

1/ Ta có : tất cả các p/s ở tổng A đều có tử bằng 1 . Mà MS 101 < 102 ; 103 ; ... ; < 200 .

   Nên 1/101 là p/s lớn nhất ( lớn hơn 1/102 ; 1/103 ; ... ; 1/200 )

2/ Tổng A có phân số là : ( 200 - 101 ) : 1 + 1 = 100 (phân số ) .

Nếu thay cả 100 p/s bằng p/s lớn nhất : 1/101 thì tổng A = 1/101 . 100 = 100/101 < 1 .

=> 1/101 + 1/102 + 1/103 + ... + 1/200 ( 100p/s ) < 1/101 + 1/101 + 1/101 + ... + 1/101 (100 p/s ) < 1 .

Vậy : A < 1

16 tháng 3 2022
Đúng rồi
11 tháng 3 2018

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{102}\) (đpcm)

29 tháng 4 2018

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)

=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

=> A < 1 - \(\frac{1}{99}\)= 98/99 < 1

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)< 1

29 tháng 4 2018

Đặt  \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)

Ta có :    \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{99^2}< \frac{1}{98.99}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow A< 1-\frac{1}{99}\)

\(\Rightarrow A< 1\left(Đpcm\right)\)

Chúc bạn học tốt !!!