Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Từ ac = b2 (1) => abc = b3
ab = c2 => abc = c3
=> b3 = c3 => b = c thay vào (1)
=> ab = b2 <=> (a - b).b = 0 <=> \(\orbr{\begin{cases}a=b\\b=0\left(loại\right)\end{cases}}\)
=> a = b = c
Khi đó: P = \(\frac{a^{555}}{a^{222}.a^{333}}+\frac{b^{555}}{b^{222}.b^{333}}+\frac{c^{555}}{c^{222}.c^{333}}=1+1+1=3\)

a, \(C=A-B=\left(x^2-10xy+2017y^2+2y\right)-\left(5x^2-8xy+2017y^2+3y-2018\right)\)
\(=x^2-10xy+2017y^2+2y-5x^2+8xy-2017y^2-3y+2018\)
\(=-4x^2-2xy-y+2018\)
b, \(C=-4x^2-2xy-y+2018\)
\(=-2x\left(2x+y\right)-y+2018\)
\(=-2x-y+2018=-1+2018=2017\)

\(\frac{1}{2}x^2y.\left(\frac{-1}{2}x^3y\right)^3.\left(-2x^2\right)^2\)
\(=\frac{1}{2}.\left(-\frac{1}{8}\right).4.x^2y.x^9.y^3.x^4\)
\(=-\frac{1}{4}x^{15}y^4\)
Với \(x=2,y=-1\) ta có :
\(-\frac{1}{4}.2^{15}.\left(-1\right)^4=-2^{13}\)
Một số chia cho 4 rồi lấy kết quả trừ đi 2 018 thì bằng 56. Số đó là: ………………..