
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(A=\frac{7^2}{2.9}+\frac{7^2}{9.16}+\frac{7^2}{16.23}+\frac{7^2}{23.30}\)
\(\Rightarrow A=7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\right)\)
\(\Rightarrow A=7.\left(\frac{1}{2}-\frac{1}{30}\right)\)
\(\Rightarrow A=\frac{49}{15}\)
đặt biểu thức là B
Ta có công thức :
\(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức, ta có :
\(B=7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+.....+\frac{1}{23}-\frac{1}{30}\right)\)
\(B=7.\left(\frac{1}{2}-\frac{1}{30}\right)=7.\frac{7}{15}=\frac{49}{15}\)
Ai thấy đúng thì ủng hộ nha !!!

Bài làm
\(A=\frac{2^2.10+2^3.6}{2^2.15-2^4}\)
\(A=\frac{2^2.10+2.2^2.6}{2^2.15-2^2.2^2.1}\)
\(A=\frac{2^2.\left(10+6\right).2}{2^2.\left(15-1\right).2^2}\)
\(A=\frac{2^2.16.2}{2^2.14.2^2}\)
\(A=\frac{16}{14.2}\)
\(A=\frac{8}{7.2}\)
\(A=\frac{8}{14}\)
\(A=\frac{4}{7}\)
Vậy \(A=\frac{4}{7}\)
\(B=\frac{2^9.15^{17}.75^3}{18^8.5^{24}.9^2}\)
\(B=\frac{2^9.\left(3.5\right)^{17}.\left(3.5^2\right)^3}{\left(2.3^2\right)^8.5^{24}.\left(3^2\right)^2}\)
\(B=\frac{2^9.3^{17}.5^{17}.3^3.5^6}{2.3^{19}.5^{24}.3^4}\)
\(B=\frac{2^8.1.1.1.5}{1.3^2.1.3}\)
\(B=\frac{2^8.5}{3^3}\)
\(B=\frac{1280}{27}\)

câu a
\(A=\frac{33.10^3}{2^3.5.10^3+7000}=\frac{33.10^3}{2^3.5.10^3+7.10^3}=\frac{33.10^3}{10^3\left(2^3.5+7\right)}=\frac{33.10^3}{10^3.47}=\frac{33}{47}\)
\(B=\frac{3774}{5217}=\frac{34.111}{47.111}=\frac{34}{47}\)
\(\Rightarrow\frac{33}{47}< \frac{34}{47}\)
=> A<B

1)\(\left(2\dfrac{3}{17}-2\dfrac{3}{5}\right)+\left(-2\dfrac{3}{17}-1\dfrac{2}{5}\right)\)
=\(\dfrac{37}{17}-\dfrac{13}{5}+\left(-\dfrac{37}{17}\right)-\dfrac{7}{5}\)
=\(\left[\dfrac{37}{17}+\left(-\dfrac{37}{17}\right)\right]-\left(\dfrac{13}{5}+\dfrac{7}{5}\right)\)
=\(0-4=-4\)
2)\(\left(2\dfrac{7}{15}-3\dfrac{3}{7}\right)-\left(-\dfrac{9}{21}+3\dfrac{7}{15}\right)\)
=\(2\dfrac{7}{15}-3\dfrac{3}{7}+\dfrac{9}{21}-3\dfrac{7}{15}\)
=\(\left(2\dfrac{7}{15}-3\dfrac{7}{15}\right)+\left(-3\dfrac{3}{7}+\dfrac{9}{21}\right)\)
=\(-1+\left(-\dfrac{24}{7}+\dfrac{9}{21}\right)\)
=\(\left(-1\right)+\left(-3\right)\)
=-4
3)\(\left(2\dfrac{7}{19}+5\dfrac{3}{7}\right)+\left(-\dfrac{14}{38}+1\dfrac{4}{7}\right)\)
\(=2\dfrac{7}{19}+5\dfrac{3}{7}+\left(-\dfrac{14}{38}\right)+1\dfrac{4}{7}\)
\(=\left(5\dfrac{3}{7}+1\dfrac{4}{7}\right)+\left[2\dfrac{7}{19}+\left(-\dfrac{14}{38}\right)\right]\)
\(=7+\left[\dfrac{45}{19}+\left(-\dfrac{14}{38}\right)\right]\)
\(=7+2=9\)
Hai câu(2),(3)mình làm bằng cách cộng trừ hỗn số cho nhanh nếu bạn không làm cách đó thì đổi ra p/s làm cũng được

\(A=1+7+7^2+7^3+...+7^{2016}\)
\(\Rightarrow7A=7\left(1+7+7^2+7^3+...+7^{2016}\right)\)
\(7A=7+7^2+7^3+7^4+...+7^{2017}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2017}\right)-\left(1+7+7^2+...+7^{2016}\right)\)
\(\Rightarrow6A=7^{2017}-1\)
\(\Rightarrow A=\dfrac{7^{2017}-1}{6}\)

Giải:
a) \(A=\dfrac{5}{13}.\dfrac{5}{7}+\dfrac{-20}{41}+\dfrac{5}{13}+\dfrac{-21}{41}\)
\(\Leftrightarrow A=\dfrac{5}{13}.\dfrac{5}{7}+\dfrac{5}{13}+\dfrac{-21}{41}+\dfrac{-20}{41}\)
\(\Leftrightarrow A=\dfrac{5}{13}\left(\dfrac{5}{7}+1\right)+\dfrac{-41}{41}\)
\(\Leftrightarrow A=\dfrac{5}{13}.\dfrac{12}{7}+\left(-1\right)\)
\(\Leftrightarrow A=\dfrac{60}{91}+\left(-1\right)=-\dfrac{31}{91}\)
Vậy ...
b) \(B=\dfrac{5}{7}.\dfrac{2}{11}+\dfrac{5}{7}.\dfrac{12}{11}-\dfrac{5}{7}.\dfrac{7}{11}\)
\(\Leftrightarrow B=\dfrac{5}{7}\left(\dfrac{2}{11}+\dfrac{12}{11}-\dfrac{7}{11}\right)\)
\(\Leftrightarrow B=\dfrac{5}{7}.\dfrac{7}{11}\)
\(\Leftrightarrow B=\dfrac{5}{11}\)
Vậy ...
c) \(C=\dfrac{-2}{3}+\dfrac{-5}{7}+\dfrac{2}{3}+\dfrac{-2}{7}\)
\(\Leftrightarrow C=\left(\dfrac{-2}{3}+\dfrac{2}{3}\right)+\left(\dfrac{-2}{7}+\dfrac{-5}{7}\right)\)
\(\Leftrightarrow C=0+\left(-1\right)=-1\)
Vậy ...

Bạn tham khảo bài giảng cô Huyền về Chữ số tận cùng nhé:
Bài giảng - Tìm chữ số tận cùng - Học toán với OnlineMath
Cái này phải dùng đồng dư thức mà ad , bài giảng trên ko nói nhiều về cái này

A=1+4+42+43+...+42014
A=(1+4+42)+(43+45+46)+...+(42012+42013+22014)
A=21.(1+43+...+42012)
B=1+7+72+...+7101
B=(1+7)+(72+73)+...+(7100+7101)
B=8(1+72+...+7100)

a,
\(\left(25^6-15^6-10^6\right):5^6\\ =\left[\left(5\cdot5\right)^6-\left(3\cdot5\right)^6-\left(2\cdot5\right)^6\right]:5^6\\ =\left(5^6\cdot5^6-3^6\cdot5^6-2^6\cdot5^6\right):5^6\\ =5^6\left(5^6-3^6-2^6\right):5^6\\ =5^6-3^6-2^6\\ =15625-729-64\\ =14896-64\\ =14832\)
b,
\(1+2+2^2+...+2^{100}\\ =1\cdot\left(1+2+2^2+...+2^{100}\right)\\ =\left(2-1\right)\left(1+2+2^2+...+2^{100}\right)=\left(2-1\right)\cdot1+\left(2-1\right)\cdot2+\left(2-1\right)\cdot2^2+...+\left(2-1\right)\cdot2^{100}\\ =2-1+2^2-2+2^3-2^2+...+2^{101}-2^{100}\\ =2^{101}-1\)
ko biết