Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a. áp dụng hệ thức lượng ta có:
\(MH^2=AH.BH\Rightarrow BH=\frac{4^2}{2}=8cm\)
\(\Rightarrow\hept{\begin{cases}AB=AH+HB=2+8=10cm\\MA=\sqrt{AH.AB}=\sqrt{20}cm\end{cases}}\)
b. ta có :
\(\frac{1}{MA^2}+\frac{1}{MB^2}\ge\frac{4}{MA^2+MB^2}=\frac{4}{AB^2}=const\)
dấu bằng xảy ra khi \(MA=MB\Rightarrow M\text{ nằm chính giữa cung tròn AB}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Thấu kính này là TLHT vì ảnh ngược chiều vs vật...cho ảnh thật,,...
b. hình tự vẽ...
f= OF = OF'= 4.8 cm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) vì là TKHT mà theo đề thì ta có d (tức là OA) < f ,=> ảnh ảo, cùng chiều và lớn hơn vật
b)Xét tam giác OAB đồng dạng vs ta, giác OA'B'
=> h/h' = d/d' (AB/A'B'=OA/OA')..........(1)
xét tam giac F'OI đồng dạng vs tgiac F'A'B'
=> h/h' = f/(f+d') (( OI/A'B' = FO/(FO+FA')))..........(2)
từ 1 và 2 => d/d' =f/(f+d')
chia 2 vế cho dd'f => 1/d =1/f + 1/d'
theo đề có d và f => d'=12
thế d'=12, d=6, h=1 vào (1)
=>h'=2
F' A O A' B' I
![](https://rs.olm.vn/images/avt/0.png?1311)
MÌNH THAM KHẢO NHÉ
a) Xét △ABO và △A′B′O có:
ABOˆ=A′B′Oˆ=900
BOAˆ=B′OA′ˆ (hai góc đối đỉnh)
⇒ Hai tam giác ABO và A'B'O là hai tam giác đồng dạng
⇒ \(\frac{A'B'}{AB}=\frac{B'O}{BO}\)
⇒ Độ phóng đại ảnh \(k=\frac{A'B'}{AB}=\frac{h'}{h}=\frac{d'}{d}\)
b) Tương tự: Hai tam giác A'B'F' và IOF' là hai tam giác đồng dạng
⇒\(\text{ }\frac{B'F'}{OF'}=\frac{A'B'}{IO}=\frac{d'}{d}\)
Áp dụng tính chất của tỉ lệ thức: \(\frac{B'F'+OF'}{OF'}=\frac{d'+d}{d}\)hay \(\frac{d'}{f}=\frac{d'+d}{d}\)
⇒\(\frac{1}{f}=\frac{1}{d}=\frac{1}{f'}\)
CÓ MẤY CÁI KÍ HIỆU GÓC, MÌNH KHÔNG BIẾT VIẾT, BẠN THÔNG CẢM
a) Xét \(\Delta ABO\) và \(\Delta A'B'O'\)
\(ABO=A'B'O=90^0\)
\(BOA=B'O'A\)( hai góc đối đỉnh )
\(\Rightarrow\)Hai tam giác ABO và A'B'O là hai tam giác đồng dạng
\(\Rightarrow\frac{A'B}{AB}=\frac{B'O}{BO}\)
\(\Rightarrow\)Độ phóng đại ảnh : \(k=\frac{A'B}{AB}=\frac{h'}{h}=\frac{d'}{d}\)
b) Tương tự : Hai tam giác A'B'F và IOF' là hai tam giác đồng dạng
\(\Rightarrow\frac{B'F'}{OF}=\frac{A'B}{TO}=\frac{d'}{d}\)
Dựa vào tính chất của tỉ lệ thức : \(\frac{B'F'+OF'}{OF'}=\frac{d'+d}{d}\)hay \(\frac{d'}{f}=\frac{d'+d}{d}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B F F'
Giải:
\(\Delta OAB\) đồng dạng \(\Delta OA'B'\)\(\Rightarrow\frac{AB}{A'B'}=\frac{OA}{OA'}\left(1\right)\)
\(\Delta FOI\) đồng dạng \(\Delta F'A'B'\)
\(\Rightarrow\frac{OI}{A'B'}=\frac{F'O}{F'A'}\Leftrightarrow\frac{OI}{A'B'}=\frac{F'O}{OA'-OF'}\left(2\right)\)
Mà \(OI=AB\) nên \(\left(1\right)=\left(2\right)\)
\(\frac{OA}{OA'}=\frac{F'O}{OA'-OF'}\)
\(\Rightarrow OA'=48cm\)
\(\Rightarrow\frac{A'B'}{AB}=\frac{48}{16}=3\)
a. xét △OAM và △OBM, có:
OA = OB (gt)
góc AOM = góc BOM (OM là phân giác)
OM là cạnh chung
=> △OAM = △OBM (c-g-c)
=> MA = MB (2 cạnh tương ứng)
b. xét tam giác OAB có OA = OB (gt)
=> △OAB là △ cân tại O
lại có OH là đường phân giác
=> OH cũng là đường trung trực
=> OH vuông góc với AB và HA = HB
=> OH vuông góc với AB tại trung điểm của AB
mà H ∈ OM
=> M cũng vuông góc với AB tại trung điểm của AB