Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(A=\frac{2n-2}{2n+4}=\frac{2n+4-6}{2n+4}=\frac{2n+4}{2n+4}-\frac{6}{2n+4}=1-\frac{6}{2n+4}\)
Để A là số nguyên thì \(\frac{6}{2n+4}\) phải là số nguyên hay nói cách khác \(6⋮\left(2n+4\right)\)
\(\Rightarrow\)\(\left(2n+4\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra :
\(2n+4\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(n\) | \(\frac{-3}{2}\) | \(\frac{-5}{2}\) | \(-1\) | \(-3\) | \(\frac{-1}{2}\) | \(\frac{-7}{2}\) | \(1\) | \(-5\) |
Mà \(n\inℤ\) nên \(n\in\left\{-5;-3;-1;1\right\}\)
Vậy \(n\in\left\{-5;-3;-1;1\right\}\)
Chúc bạn học tốt ~
b)Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
1.
a) \(A=2+\frac{1}{n-2}\)
\(A\in Z\Rightarrow n-2\in U\left(1\right)=\left\{-1,1\right\}\Rightarrow n\in\left\{1;3\right\}\)
b) Gọi \(d=ƯC\left(2n-3;n-2\right)\)
\(\Rightarrow\begin{cases}2n-3⋮d\\n-2⋮d\end{cases}\)
\(\Rightarrow\begin{cases}2n-3⋮d\\2\left(n-2\right)⋮d\end{cases}\)
\(\Rightarrow2n-3-2\left(n-2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
Vậy A là phân số tối giản.
2.
- Từ giả thiết ta có \(P=3k+1\) hoặc \(P=3k+2\) ( \(k\in N\)* )
- Nếu \(P=3k+2\) thì \(P+4=3k+6\) là hợp số ( loại )
- Nếu \(P=3k+1\) thì \(P-2014=3k-2013\) chia hết cho 3
Vậy p - 2014 là hợp số
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)
Vậy điều kiện của n để A là phân số là \(n\ne1\)
Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)
Lập bảng :
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : .....
Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)
để A là số nguyên thì n-1 chia hết cho 5
suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}
* Xét trường hợp:
TH1 n-1=1 suy ra n=2(TM)
TH2 n-1=-1 suy ra n=0 (TM)
TH3 n-1=5 suy ra n=6(TM)
TH4n-1=-5 suy ra n=-4(TM) ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)
vậy n thuộc { -4;0;2;6}
# HỌC TỐT #
a) Để \(A=\frac{3x+2}{x+1}\) là số nguyên thì:
\(3x+2⋮x+1\)
Ta có: 3x + 2 = 3(x + 1) - 1
mà 3x + 2 \(⋮\)x+1 => 3(x + 1) - 1\(⋮\)x + 1
có x + 1 \(⋮\)x+1 => -1 \(⋮\)x+1 hay x + 1 \(\in\)Ư(-1) = {1;-1}
Ta có bảng sau:
x+1 | 1 | -1 |
x | 0 | -2 |
Vậy để \(A=\frac{3x+2}{x+1}\) là số nguyên thì x = 0 hoặc x = 2
b) Gọi ƯCLN(3n + 2, 2n + 1) = d (d \(\in\)N)
\(=>\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)
\(=>\hept{\begin{cases}2\left(3n+2\right)⋮d\\3\left(2n+1\right)⋮d\end{cases}}\)
\(=>\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)
\(=>\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(=>1⋮d\) \(=>d=1\)
Vậy phân số \(B=\frac{3n+2}{2n+1}\) là phân số tối giản
a: Để A là phân số thì \(n-2\ne0\)
=>\(n\ne2\)
=>\(n\in Z\backslash\left\{2\right\}\)
b: Gọi d=ƯCLN(2n+1;n-2)
=>\(\left\{{}\begin{matrix}2n+1⋮d\\n-2⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2n+1⋮d\\2n-4⋮d\end{matrix}\right.\)
=>\(2n+1-2n+4⋮d\)
=>\(5⋮d\)
=>A chưa chắc là phân số tối giản nha bạn
Lớp ấy làm gì đã học `Z\{2}` :>>