Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
222333=(2223)111=10941048111
333222=(3332)111=110889111
=> 222333>333222
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}.\text{ Để là số nguyên âm thì }\frac{5}{n-2}< 1\Rightarrow-6< n-2< 0\)
\(\Rightarrow-4< n< 2\)
NHững câu còn lại lm tưng tự!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{-n3+1}{3n}=\frac{-3n+1}{3n}\)
Gọi d = ƯCLN( -3n + 1; 3n ). Ta có :
\(\hept{\begin{cases}-3n+1⋮d\\3n⋮d\end{cases}\Leftrightarrow-3n+1+3n⋮d\Leftrightarrow1⋮d}\)
Vậy \(d\in\left\{1;-1\right\}\), suy ra \(\frac{-n3+1}{3n}\) tối giản ( đpcm )
Gọi d = ƯCLN( -n + 14; 3n - 11). Ta có :
\(\hept{\begin{cases}-n+14⋮d\\3n-11⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}3n-42⋮d\\3n-11⋮d\end{cases}\Leftrightarrow}3n-42-3n+11⋮d\Leftrightarrow-31⋮d}\)
Vậy \(d\in\left\{1;31;-1;-31\right\}\), suy ra \(\frac{-n+14}{3n-11}\) tối giản ( đpcm )
Bạn cần tìm số tự nhiên a sao cho 1960 và 2002 đều chia cho a với số dư là 28.
Khi làm điều này, bạn có thể sử dụng điều kiện sau:
Khi chia 1960 cho a, ta có: 1960 ≡ 28 mod a
Khi chia 2002 cho a, ta có: 2002 ≡ 28 mod a
Từ đó , ta có thể viết lại:
1. 1960 - 28 chia cho a (tức là 1932 chia cho a)
2. 2002 - 28 chia cho a (tức là 1974 chia cho a)
Vậy, ta cần tìm a là ước chung lớn nhất của 1932 và 1974.
Sau khi tính, bạn sẽ tìm được các giá trị có thể cho a.
vì 1960,2002 : a có dư đều là 28 nên
(1960-28)chia hết cho a
(2002-28)chia hết cho a
=> 1932 và 1974 chia hết cho a
=> a thuộc ƯC(1932,1974)
=>a thuộc ước của 42 do 42 là ƯCLN của 1932 và 1974 (sau đó cứ tìm là ra)