K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2

x ∈ {-4, 2, 4, 10}

ĐKXĐ: x<>3

Để P là số nguyên thì \(x+4⋮x-3\)

=>\(x-3+7⋮x-3\)

=>\(7⋮x-3\)

=>\(x-3\in\left\{1;-1;7;-7\right\}\)

=>\(x\in\left\{4;2;10;-4\right\}\)

15 tháng 6 2017

\(H=\frac{x^4+x^3+x^2+x-29}{x^2+1}=x^2+x-\frac{29}{x^2+1}\)

Để H nguyên thì \(x^2+1\)phải là ước nguyên dương của 29 hay

\(\left(x^2+1\right)=\left(1;29\right)\)

\(\Rightarrow x=0\)

20 tháng 6 2017

thanks bn nhiều

11 tháng 12 2018

để A xác định

\(\Rightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x^2\ne4\end{cases}}\Rightarrow x\ne\pm2\)

\(A=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-6}{x^2-4}\)

\(A=\frac{4.x-8}{\left(x+2\right).\left(x-2\right)}+\frac{3.x+6}{\left(x-2\right).\left(x+2\right)}-\frac{5x-6}{\left(x-2\right).\left(x+2\right)}\)

\(A=\frac{4x-8+3x+6-5x+6}{\left(x+2\right).\left(x-2\right)}=\frac{2.\left(x+2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{2}{x-2}\)

11 tháng 12 2018

\(\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-6}{x^2-4}=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{4x-8}{\left(x+2\right)\left(x-2\right)}+\frac{3x+4}{\left(x-2\right)\left(x+2\right)}-\frac{5x-6}{\left(x-2\right)\left(x+2\right)}=\frac{4x-8+3x+4-5x+6}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{2x+2}{\left(x+2\right)\left(x-2\right)}=\frac{2x+2}{x^2-4}\)

C, \(x=4\Rightarrow A=\frac{2x+2}{x^2-4}=\frac{-6}{12}=\frac{-1}{2}\)

d, \(A\inℤ\Leftrightarrow2x+2⋮x^2-4\Leftrightarrow2x^2+2x-2x^2+8⋮x^2-4\Leftrightarrow2x+8⋮x^2-4\)

\(\Leftrightarrow2x^2+8x⋮x^2-4\Leftrightarrow16⋮x^2-4\)

\(x^2-4\inℕ\)

\(\Rightarrow x^2\in\left\{0;4;12\right\}\)

Thử lại thì 12 ko là số chính phương vậy x=0 hoặc x=2 thỏa mãn

mk học lớp 6 mong mn thông cảm nếu có sai sót

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)

3 tháng 11 2017

a) \(x\ne2;-2;-4\)

b) và c) thì bạn rút gọn M rồi tính

4 tháng 11 2017

cách nhân ntn ạ 

13 tháng 12 2019

a) ĐKXĐ: \(\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\\2-x\ne0\end{cases}}\) => \(\hept{\begin{cases}x\ne-2\\x\ne\pm2\\x\ne2\end{cases}}\) => \(x\ne\pm2\)

Ta có:Q = \(\frac{x-1}{x+2}+\frac{4x+4}{x^2-4}+\frac{3}{2-x}\)

Q = \(\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4x+4}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

Q = \(\frac{x^2-2x-x+2+4x+4-3x-6}{\left(x+2\right)\left(x-2\right)}\)

Q = \(\frac{x^2-2x}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x}{x+2}\)

b) ĐKXĐ P: x - 3 \(\ne\)0 => x \(\ne\)3

Ta có: P = 3 => \(\frac{x+2}{x-3}=3\)

=> x + 2 = 3(x - 3)

=> x + 2 = 3x - 9

=> x - 3x = -9 - 2

=> -2x = -11

=> x = 11/2 (tm)

Với x = 11/2 thay vào Q => Q = \(\frac{\frac{11}{2}}{\frac{11}{2}+2}=\frac{11}{15}\)

c) Với x \(\ne\)\(\pm\)2; x \(\ne\)3

Ta có: M = PQ = \(\frac{x+2}{x-3}\cdot\frac{x}{x+2}=\frac{x}{x-3}=\frac{x-3+3}{x-3}=1+\frac{3}{x-3}\)

Để M \(\in\)Z <=> 3 \(⋮\)x - 3

=> x - 3 \(\in\)Ư(3) = {1; -1; 3; -3}

Lập bảng:

x - 3 1 -1 3 -3
  x 4 2 (ktm) 6 0

Vậy ...

6 tháng 10 2019

x= 3.x+x

x3.x2=x1.x =x3

x=3++.x3

x=6.3xx=4

a x=5

b m=4.5.

x=4.5-.5.4 +6+

m se co gia tri lon nhat la.4.5.6-7+8

tu di ma tinh tui giai cho roi day neu muon day them goi 0637995421

6 tháng 10 2019

\(a,\)\(M=\frac{3x+3}{x^3+x^2+x+1}=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)

\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}=\frac{3}{x^2+1}\)

\(b,M\in Z\Leftrightarrow\frac{3}{x^2+1}\in Z\)

\(\Rightarrow3\)\(⋮\)\(x^2+1\)\(\Rightarrow x^2+1\inƯ_3\)

Ta có \(Ư_3=\left\{\pm1;\pm3\right\}\)

Mà \(x^2+1\ge1\)với mọi x 

\(\Rightarrow\orbr{\begin{cases}x^2+1=1\\x^2+1=3\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{2}\end{cases}}}\)

\(c,\)\(M_{max}\Leftrightarrow x^2+1\)nhỏ nhất \(\Rightarrow x^2\)nhỏ nhất \(\Rightarrow x=0\)

\(\Rightarrow M_{max}=3\Leftrightarrow x=0\)

8 tháng 3 2019

Cho đường tròn (o)  Và điểm A khánh  nằm ngoài đường tròn từ A vê 2 tiếp tuyến AB, AC với đường tròn . D nằm giữa A và E tia phân giác của góc DBE cắt DE ở I 

a)  chứng minh rằng AB2 =AD * AE

b) Chứng minh rằng BD/BE=CD/CE

8 tháng 12 2016

Ta có: \(A=\frac{x+5}{x+3}=\frac{x+3+2}{x+3}=\frac{x+3}{x+3}+\frac{2}{x+3}=1+\frac{2}{x+3}=1\frac{2}{x+3}\)

=> Để biểu thức A đạt giá trị nguyên thì x+3 ϵ Ư(2)= { +1; +2}

* Nếu x+3= -1 => x= -1-3=-4;

* Nếu x+3= 1 => x= 1-3= -2;

* Nếu x+3= -2 => x= -2-3= -5;

* Nếu x+3= 2 => x= 2-3= -1

Vậy để biểu thức A đạt giá trị nguyên thì xϵ { -4; -2; -5; -1}

 

ĐKXĐ: \(x+3\ne0\\ x\ne-3\)

Để biểu thức A có giá trị nguyên thì \(\frac{x+5}{x+3}\)có giá trị nguyên.

\(=>x+3\inƯ\left(x+5\right)\)

 

17 tháng 3 2019

a)     \(ĐKXĐ:x\ne-3;x\ne2\)

b)     \(P=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(P=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(P=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(P=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

vậy \(P=\frac{x-4}{x-2}\)

\(P=\frac{-3}{4}\) \(\Leftrightarrow\frac{x-4}{x-2}=\frac{-3}{4}\)

\(\Leftrightarrow4\left(x-4\right)=-3.\left(x-2\right)\)

\(\Leftrightarrow4x-16=-3x+6\)

\(\Leftrightarrow7x=22\)

\(\Leftrightarrow x=\frac{22}{7}\)

c) \(P\in Z\Leftrightarrow\frac{x-4}{x-2}\in Z\)

\(\frac{x-2-6}{x-2}=1-\frac{6}{x-2}\in Z\)

mà \(1\in Z\Rightarrow\left(x-2\right)\inƯ\left(6\right)\in\left(\pm1;\pm2;\pm3;\pm6\right)\)

mà theo ĐKXĐ:  \(\Rightarrow\in\left(\pm1;-2;3;\pm6\right)\)

thay mấy cái kia vào rồi tìm \(x\)

d) \(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\)

khi \(x=3\Rightarrow P=\frac{3-4}{3-2}=-1\)

khi \(x=-3\Rightarrow P=\frac{-3-4}{-3-2}=\frac{-7}{-5}=\frac{7}{5}\)