Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABDC có
M là trung điểm của đường chéo AD
M là trung điểm của đường chéo BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD và AB=CD

a: Xét ΔMAB và ΔMDC có
MA=MD
\(\hat{AMB}=\hat{DMC}\) (hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
=>AB=DC
ΔMAB=ΔMDC
=>\(\hat{MAB}=\hat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
b: Xét ΔMBA và ΔMCD có
\(\hat{MBA}=\hat{MCD}\) (hai góc so le trong, AB//CD)
MB=MC
\(\hat{BMA}=\hat{CMD}\) (hai góc đối đỉnh)
Do đó: ΔMBA=ΔMCD
=>MA=MD
=>M là trung điểm của AD
Giải:
Câu a:
Xét tứ giác ABCD có:
AM = MD (gt)
MB = MC (gt)
⇒ Tứ giác ABCD là hình bình hành(tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường thì tứ giác đó là hình bình hành)
Tứ giác ABCD là hình bình hành(cmt)
⇒ AB song song và bằng CD (đpcm)

a: Xét tứ giác ABDC có
M là trung điểm của đường chéo AD
M là trung điểm của đường chéo BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD và AB=CD

a)xet tam giac vuong AHB va tam giac vuong DKC ta co
AB=CD(gt), goc ABH=goc KCD ( 2 goc sole trong va AB//CD)
--> tam giac AHB= tam giac DKC ( ch-gn)
--> AH=DK ( 2 canh tuong ung)
b) ta co
OB=OC ( O la trung diem BC)
BH=CK( tam giac AHB=tam giac DKC)
--> OB=BH=OC-CK
--> OH=HK
xet tam giac AHO va tam giac DKO ta co
OH=HK (Cmt); AH=DK( tam giac ABH= tam giac CDK); goc AHO=goc DKO(=90)
--> tam giac AHO=tam giac DKO (c-g-c)
--> goc AOH=goc KOD
ta co
goc AOH+goc AOC=180 ( 2 goc ke bu)
goc AOH=goc KOD (cmt)
--> goc KOD+ goc AOC=180
--> goc AOD=180--> A,O,D thang hang
c) xet tam giac AOC va tam giac DOB ta co
OA=OD ( tam giac OAH=tam giac OKD); OC=OB( O la trung diem BC);goc AOC=goc BOD ( 2 goc doi dinh)
--> tam giac AOC = tam giac DOB (c-g-c)
--> goc OAC=goc ODB ( 2 goc tuong ung)
ma goc OAC va goc ODB nam o vi tri so le trong
nen AC//BD
A B C H O D K

Đề gì vậy
ngay phân a đã có M là trung điểm AD rồi
giờ câu b lại chứng minh M là trung điểm AD
??? đề viết kiểu gì vậy
LƯU Ý : Phần a và phần b là 2 bài khác nhau , 2 phần ấy không liên quan gì đến nhau cả , mỗi phần là 1 bài làm khác nhau nhé mọi người <33

A B C M K D E x y
trên tia đối của MA lấy K : AM = MK
a. xét tam giác AMC và tam giác KMB có : MA = MK (cách vẽ)
BM = MC do M là trung điểm của BC (gt)
^AMC = ^KMB (đối đỉnh)
=> BK = AC (1)
^CAM = ^MKB mà 2 góc này slt
=> BK // AC
=> ^BAC + ^ABK = 180 (tcp) (2)
có : ^DAB + ^ABC + ^EAC + ^DAE = 360
^DAB = ^EAC = 90
=> ^DAE + ^BAC = 180 và (2)
=> ^DAE = ^ABK
xét tam giác ABK và tam giác DAE có : AD = AB (gt)
AE = AC (Gt) và (1) => AE = BK
=> tam giác ABK = tam giác DAE (C-g-c)
=> DE = AK (Đn)
AM = AK/2 do AM = MK (cách vẽ)
=> AM = DE/2
b, gọi AM cắt DE tại H
có : ^DAH + ^DAB + ^BAK = 180
^DAB = 90
=> ^DAH + ^BAK = 90
^BAK = ^HDA do tam giác DAE = tam giác ABK (câu a)
=> ^HDA + ^DAH = 90 xét tam giác DHA
=> ^DHA = 90
=> AM _|_ DE

Lần lượt hạ DM, EN vuông góc AH tại M, N
ta có ˆADM=ˆCAH (góc có cạnh tương ứng vuông góc) (1)
AD =CA (2)
ˆDAM=ˆACHDAM^=ACH^ (góc có cạnh tương ứng vuông góc) (3)
từ (1, 2, 3)=>△ADM=△CAH△ADM=△CAH (g, c, g)
=>DM =AH (4)
c minh tương tự △AEN=△BAH△AEN=△BAH (g, c, g)
=>EN =AH (5)
từ (4, 5) =>DM =EN
mà DM //EN
DMEN là hình bình hành
=>MN đi qua trung điểm I của DE
hay AH đi qua trung điểm I của DE (đpcm)
Ta có: AB \(\perp\) AC (Δ ABC vuông tại A)
mà CD \(\perp\) AC (đề bài)
⇒ CD \(//\) AB
⇒ Góc DCM = Góc AMC ; Góc ACM= Góc CMD (2 cặp góc này ở vị trí so le trong)
mà (Góc DCM) + (Góc ACM) =90o (CD \(\perp\) AC)
⇒ (Góc AMC) + (Góc CMD) =90o
⇒ AM \(\perp\) MD
ai giúp với