Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

K D H A B C
a) Xét tam giác ADC và tam giác BKC có:
\(\hept{\begin{cases}\widehat{C}\text{ chung}\\\widehat{BKC}=\widehat{ADC}\left(=90^{\text{o}}\right)\end{cases}}\Rightarrow\Delta ADC\approx\Delta BKC\)(g-g)
b) Xét tam giác BDM và tam giác BDH có :
\(\hept{\begin{cases}BD\text{ chung}\\\widehat{BDM}=\widehat{BDH}\left(=90^{\text{o}}\right)\\MD=DH\end{cases}}\Rightarrow\Delta BDM=\Delta BDH\left(c.g.c\right)\)
=> \(\widehat{BMD}=\widehat{BHD}\left(\text{góc tương ứng}\right)\)
=> \(\Delta MBH\text{ cân tại B}\)
c) Xét tam giác AHK và tam giác BMD có :
\(\hept{\begin{cases}\widehat{BMD}=\widehat{AHK}\left(=\widehat{BHD}\right)\\\widehat{BDM}=\widehat{HKA}\left(=90^{\text{o}}\right)\end{cases}\Rightarrow\Delta AKH\approx\Delta BMD\left(g-g\right)}\)
=> \(\Rightarrow\widehat{DBM}=\widehat{KAH}\text{ hay }\widehat{CBM}=\widehat{CAM}\)

bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html
bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html

a: Xét tứ giác BHCN có M là trung điểm chung của BC và HN
nên BHCN là hình bình hành
b: BHCN là hình bình hành
=>BH//CN
mà BH⊥AC
nên CN⊥CA
Ta có: BHCN là hình bình hành
=>CH//BN
mà CH⊥BA
nên BN⊥BA
Xét tứ giác ABNC có \(\hat{ABN}+\hat{ACN}+\hat{BAC}+\hat{BNC}=360^0\)
=>\(\hat{BAC}+\hat{BNC}=360^0-90^0-90^0=180^0\)
c: Xét ΔHKN có
D,M lần lượt là trung điểmcủa HK,HN
=>DM là đường trung bình của ΔHKN
=>DM//KN
=>BC//KN
Xét ΔCHK có
CD là đường cao
CD là đường trung tuyến
Do đó: ΔCHK cân tại C
=>CH=CK
mà CH=BN
nên CK=BN
Xét tứ giác BCNK có
BC//NK
BN=CK
Do đó: BCNK là hình thang cân
a, Xét \(\Delta ADC\) và \(\Delta BKC\), ta có:
\(\widehat{D}\) = \(\widehat{K}\) = 90 độ
\(\widehat{C}\) chung
\(\Rightarrow\)\(\Delta ADC\) đồng dạng \(\Delta BKC\)
b, thiếu dữ kiện