\(\sqrt{x^2+2x-1}\) =\(x^2\)-2x-1

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

Giải:

Điều kiện: \(x^2+2x-1\ge0\)

Đặt \(t=\sqrt{x^2+2x-1}\ge0\); khi đó phương trình trở thành:

\(2\left(1-x\right)t=t^2-4x\Leftrightarrow t^2-2\left(1-x\right)t-4x=0\Leftrightarrow\orbr{\begin{cases}1-x+x+1=2\\t=1-x-\left(x+1\right)=-2x\end{cases}}\)

Tham khảo.

23 tháng 11 2016

2(1x)x2+2x1=x22x12(1−x)x2+2x−1=x2−2x−1

ĐKXĐ:.............................

2(1x)x2+2x1=x22x12(1−x)x2+2x−1=x2−2x−1

2(1x)(1+x)22=(1x)22⇔2(1−x)(1+x)2−2=(1−x)2−2

Đặt {a=1+xb=1x{a=1+xb=1−x, ta có hệ:

{

18 tháng 2 2017

mấy câu đầu + giữa = bình phương+ liên hợp

câu cuối cùng pt cho thành mũ 2

NV
20 tháng 7 2020

7.

ĐKXĐ: ...

\(\Leftrightarrow10\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=3\left(x^2+2\right)\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow10ab=3\left(a^2+b^2\right)\)

\(\Leftrightarrow3a^2-10ab+3b^2=0\)

\(\Leftrightarrow\left(a-3b\right)\left(3b-a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=3b\\3a=b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=3\sqrt{x+1}\\3\sqrt{x^2-x+1}=\sqrt{x-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=9x+9\\9x^2-9x+9=x-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-10x-8=0\\9x^2-10x+10=0\end{matrix}\right.\) (casio)

NV
20 tháng 7 2020

6.

ĐKXĐ: ...

\(\Leftrightarrow2x^2+4=3\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow2a^2+2b^2=3ab\)

\(\Leftrightarrow2a^2-3ab+2b^2=0\)

Phương trình vô nghiệm (vế phải là \(5\sqrt{x^3+1}\) sẽ hợp lý hơn)

8 tháng 8 2017

b) pt \(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

Đk: \(x\ge\dfrac{5}{2}\)

\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\) (*)

TH1: \(\sqrt{2x-5}-1>0\Leftrightarrow x>3\)

(*) \(\Leftrightarrow\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\Leftrightarrow2\sqrt{2x-5}=2\Leftrightarrow\sqrt{2x-5}=1\Leftrightarrow x=3\left(L\right)\)

TH2: \(\sqrt{2x-5}+3< 0\) (vô lý)

TH3: \(x\le3\)

(*) \(\Leftrightarrow\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\Leftrightarrow4=4\) (luôn đúng)

KL: \(\dfrac{5}{2}\le x\le3\)

8 tháng 8 2017

câu a, biểu thức trong dấu căn thứ 2 là \(x-2\sqrt{2x-1}\) hay \(x-\sqrt{2x-1}\) (có số 2 hay không?)

21 tháng 7 2019

MN ƠI GIÚP MK NHA MAI MIK ĐI HOK R

21 tháng 7 2019

nhìn mà nhác giải vl :v

a) \(\sqrt{3x^2-2x+1}+4x=\sqrt{3x^2+2x}+1\)

<=> \(\sqrt{3x^2-2x+1}=\sqrt{3x^2+2x}+1-4x\)

<=> \(\left(\sqrt{3x^2-2x+1}\right)^2=\left(\sqrt{3x^2+2x}+1-4x\right)^2\)

<=> \(3x^2-2x+1=19x^2-8\sqrt{3x^2+2x}.x-6x+2\sqrt{3x^2+2x}+1\)

<=> \(-16x^2+8\sqrt{3x^2+2x}.x+4x-2\sqrt{3x^2+2x}=0\)

<=> \(-2\left(4x-1\right)\left(2x-\sqrt{3x^2+2x}\right)=0\)

<=> \(\hept{\begin{cases}x=\frac{1}{4}\\x=0\\x=2\end{cases}}\) <=> \(\orbr{\begin{cases}x=\frac{1}{4}\\x=0\end{cases}}\) (vì k có ngoặc vuông 3 nên mình dùng tạm ngoặc nhọn, thông cảm)

<=> \(\orbr{\begin{cases}x=\frac{1}{4}\\x=2\end{cases}}\)

b) \(\sqrt{x^2+x-2}+x^2=\sqrt{2\left(x-1\right)}+1\)

<=> \(\sqrt{x^2+x-2}=\sqrt{2\left(x-1\right)}+1-x^2\)

<=> \(\left(\sqrt{x^2+x-2}\right)^2=\left[\sqrt{2\left(x-1\right)}+1-x^2\right]^2\)

<=> \(x^2+x-2=x^4-2\sqrt{2}.x^2.\sqrt{x-1}-2x^2+2x+2\sqrt{2}.\sqrt{x-2}-1\)

<=> \(x^4-2\sqrt{2}.x^2.\sqrt{x-1}-2x^2+2x+2\sqrt{2}.\sqrt{x-1}-1=x^2+x-2\)

<=> \(-2\sqrt{2}.x^2.\sqrt{x-1}+2\sqrt{2}.\sqrt{x-1}-1=-x^4+3x^2-x-2\)

<=> \(-2\sqrt{2}.x^2.\sqrt{x-1}+2\sqrt{2}.\sqrt{x-1}=-x^4+3x^2-x-1\)

<=> \(-2\sqrt{2}.\sqrt{x-1}.\left(x^2+1\right)=-x^4+3x^2-x-1\)

<=> \(\left[-2\sqrt{2}.\sqrt{x-1}\left(x^2+1\right)\right]^2=\left(-x^4+3x^2-x-1\right)^2\)

<=> \(8x^5-8x^4-16x^3+16x^2+8x-8=x^8-6x^6+2x^5+11x^4-6x^3-5x^2+2x+1\)

<=> x = 1

d) mình làm tắt cho nhanh 

d) \(\left(\sqrt{4+x}-1\right)\left(\sqrt{1-x}+1\right)=2x\)

<=> \(\sqrt{4+x}.\sqrt{x-1}+\sqrt{4+x}-\sqrt{x-1}-1=2x\)

<=> \(\sqrt{4+x}.\sqrt{1-x}+\sqrt{4+x}-\sqrt{1-x}=2x+1\)

<=> \(\sqrt{4+x}.\sqrt{x-1}+\sqrt{4+x}=2x+1+\sqrt{x-1}\)

<=> \(\left(\sqrt{4+x}.\sqrt{1-x}+\sqrt{4+x}\right)^2=\left(2x+1+\sqrt{1-x}\right)^2\)

<=> \(2\sqrt{-x+1}.\left(x+4\right)=5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6\)

<=> \(\frac{2\sqrt{-x+1}.\left(x+4\right)}{2\left(x+4\right)}=\frac{5x^2}{2\left(x+4\right)}+\frac{4x\sqrt{-x+1}}{2\left(x+4\right)}+\frac{5x}{2\left(x+4\right)}+\frac{2\sqrt{-2x+1}}{2\left(x+4\right)}-\frac{6}{2\left(x+4\right)}\)

<=> \(\sqrt{-x+1}=\frac{5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6}{2\left(4+x\right)}\)

<=> \(2\sqrt{-x+1}.\left(4+x\right)=5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6\)

<=> \(-2x\sqrt{-x+1}+6\sqrt{-x+1}=5x^2+5x-6\)

<=> \(\frac{2\sqrt{-x+1}.\left(-x+3\right)}{2\left(-x+3\right)}=\frac{5x^2}{2\left(-x+3\right)}+\frac{5x}{2\left(-x+3\right)}-\frac{6}{2\left(-x+3\right)}\)

<=> \(\sqrt{-x+1}=\frac{5x^2+5x-6}{2\left(x-3\right)}\)

<=> \(\left(\sqrt{-x+1}\right)^2=\left[\frac{5x^2+5x-6}{2\left(3-x\right)}\right]^2\)

<=> \(-x+1=\frac{25x^4+50x^3-35x^2-60x+36}{36-24+4x}\)

<=> \(\hept{\begin{cases}x=0\\x=\frac{21}{25}\\x=-3\end{cases}}\)=> x = 21/25 (lý do dùng ngoặc nhọn như lý do mình ghi ở trên =))) )

=> x = 21/25

13 tháng 8 2017

1 câu hỏi post 2 câu thôi là chán rồi ==" bạn gắng post lại từng câu 1 mình làm cho nhé :v

12 tháng 7 2019

GIÚP MK NHA CÁC BN