K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

Tổng các số hạng của B là:

8n+(1+1+........+1)=8n+n = 9n chia hết cho 9. Vậy B chia hết cho 9

         n chữ số 1

15 tháng 10 2016

ta có :tổng các chữ số của 111....1         =  1+1+1+...+1     = n

                                     n chữ số 1        n chữ số 1

Cho A = 8n +n=(8+1)+n=9n

   Vì 9n chia hết cho 9

\(\Rightarrow\)B chia hết cho 9

23 tháng 10 2016

Linh ơi bài này ở đâu thế

23 tháng 10 2016

bài này ở toán buổi chiều

26 tháng 11 2019
https://i.imgur.com/L2RBgLJ.jpg
8 tháng 8 2016

Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?

8 tháng 8 2016

trool tao à

5 tháng 12 2024

Ta thấy: 11...1 ( n chữ số 1) có tổng = n nên:
8n +n = n x ( 8+1 ) = n x 9 chia hết cho 9 
Vậy A chia hết cho 9

AH
Akai Haruma
Giáo viên
30 tháng 7 2024

Lời giải:

$\underbrace{\overline{111...1}}_{n}$ có tổng các chữ số là $n$

$\Rightarrow \overline{111....1}-n\vdots 9$

$\Rightarrow \overline{111....1}-n+9n\vdots 9$

$\Rightarrow \overline{1111...1}+8n\vdots 9$

Hay $A\vdots 9$

14 tháng 9 2024

cho các số 1,3,4,7,8.từ năm chữ số này có thể lập được tát cả bao nhiêu số chẵn có năm chữ số khác nhau sô

21 tháng 9 2015

b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)

=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)

=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)

=3+3^2.13+3^5.13+.........+3^58.13

=3.13.(3^2+3^5+....+3^58)

vi tich tren co thua so 13 nen tich do chia het cho 13

=

21 tháng 9 2015

bai1

a) A=(31+32)+(33+34)+...+(359+360)

=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)

=3^1.(1+3)+...+3^59.(1+3)

=3^1.4+....+3^59.4

=4.(3^1+...+3^59)

vi tich tren co thua so 4 nen tich do chia het cho 4