Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C M D E K
c ) Trên tia đối của AM lấy điểm K sao cho AK = AM
Xét \(\Delta MAB\) và \(\Delta MKC\) có :
BM = MC (gt)
\(\widehat{AMB}=\widehat{CMK}\)( đối đỉnh)
AM = MK (cách dựng)
\(\Rightarrow\Delta MAB=\Delta MKC\) (C - G - C)
=> AB = CK (cạnh tương ứng)
trong tam giác ACK có AC + CK > AK ( bđt tam giác)
Mà AB = CK (cm trên) ; AK = 2AM (cách dựng)
=> AB + AC > 2AM ( đpcm )
Thứ 2 tuần sau mình phải nộp rồi. Các bạn giải nhanh cho mình nhá! Thanks!

Lời giải:
a)
Tam giác $ABC$ cân tại $A$ nên $AB=AC$
Do $DBC$ là tam giác đều nên $DB=DC$
Xét tam giác $ABD$ và $ACD$ có:
\(\left\{\begin{matrix} AB=AC\\ BD=CD\\ AD-\text{chung}\end{matrix}\right.\Rightarrow \triangle ABD=\triangle ACD(c.c.c)\)
\(\Rightarrow \angle ADB=\angle ADC\Rightarrow AD\) là tia phân giác góc $BAC$
b)
Hình vẽ cho thấy AM không thể bằng BC!

a: Xét ΔABD và ΔACD có
AB=AC
BD=CD
AD chung
Do đó: ΔABD=ΔACD
b: Xét ΔADM và ΔADN có
AM=AN
góc MAD=góc NAD
AD chung
Do đó: ΔADM=ΔADN
c: Xét tứ giác DNEC có
K là trung điểm chung của DE và NC
nên DNEC là hình bình hành
=>NE//CD
=>NE//BC
d: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
=>M,N,E thẳng hàng

Ta có hình vẽ:
B A C E F K D
a/ Trong tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
hay 900 + góc B + 400 = 1800
=> góc ABC = 500
Ta có: \(\widehat{ABD}\)=\(\widehat{DBC}\)=\(\frac{1}{2}\widehat{ABC}\)= \(\frac{1}{2}\)500 = 250
Vậy góc ABD = 250
b/ Xét tam giác ABD và tam giác EBD có:
\(\widehat{ABD}=\widehat{DBE}\) (GT)
BD: chung
AB = EB (GT)
Vậy tam giác ABD = tam giác EBD (c.g.c)
Ta có: tam giác ABD = tam giác EBD
=> \(\widehat{A}=\widehat{E}=90^0\) hay DE \(\perp\)BC (đpcm)
c/ Xét tam giác ABC và tam giác EBF có:
\(\widehat{B}\): góc chung
BA = BE (GT)
góc A = góc E = 900 (đã chứng minh trên)
=> tam giác ABC = tam giác EBF
(trường hợp cạnh huyền góc nhọn)
d/ Xét tam giác BFK và tam giác BCK có:
BK: cạnh chung
\(\widehat{FBK}=\widehat{CBK}\) (GT)
BF = BC (tam giác ABC = tam giác EBF)
=> tam giác BFK = tam giác BCK (c.g.c)
=> \(\widehat{BKF}\)=\(\widehat{BKC}\) (2 góc tương ứng)
Mà góc BKC = 900 (do CK\(\perp\)BD) => góc BKF = 900
Ta có: \(\widehat{FKC}=\widehat{BKF}+\widehat{BKC}=90^0+90^0=180^0\)
hay K,F,C thẳng hàng
d) ta có tam giác ABC = tam giác EBF ( theo c)
=> BC = BF ( 2 cạnh tương ứng)
Xét tam giác BKC và tam giác BKF có:
BC = BF ( gt )
BK chung
KBK = FBC ( gt)
=> tam giác BKC = tam giác BKF ( c.g.c )
=> BKC = BKF ( 2 góc tương ứng)
=> BKC + BKF = 180°( 2 góc kề bù)
=> BKC = BKF = 180° : 2 = 90° = FKC
vậy 3 điểm F,K,C thẳng hàng

A B C D M
a) Xét tam giác DAB và tam giác DAC có :
ABD = ACD ( = 900 )
AD chung
AB = AC ( gt )
=> tam giác DAB = tam giác DAC ( ch - cgv )
=> đpcm
b) Vì tam giác DAB = tam giác DAC ( chứng minh câu a )
=> BD = CD ( 2 cạnh tương ứng )
=> tam giác BDC cân tại D ( đpcm )
c) Ta có :
+) AB = AC => A thuộc đường trung trực của BC (1)
+) BM = MC => M thuộc đường trung trực của BC (2)
+) BD = CD => D thuộc đường trung trực của BC (3)
Từ (1),(2) và (3) => A, M, D thẳng hàng ( đpcm )
*Link ảnh(nếu như olm không hiện):Ảnh - by tth
a) Xét tam giác DAB và tam giác DAC có:
AB = AC (gt)
AD (cạnh chung - cũng là cạnh huyền)
\(\widehat{ABD}=\widehat{ACD}\left(=90^o\right)\) (gt)
Do vậy \(\Delta DAB=\Delta DAC\) (cạnh huyền - cạnh góc vuông)
b) \(\Delta DAB=\Delta DAC\) nên BD = CD (hai cạnh tương ứng)
Do đó \(\Delta DBC\) cân (tại D)
c) Bạn Trần Phương đã làm =))

a: Xét ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
Do đó: ΔABH=ΔACH
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: Xét ΔAEH và ΔADH có
AE=AD
góc EAH=góc DAH
AH chung
Do đo; ΔAEH=ΔADH
=>góc AEH=góc ADH=90 độ
=>HE vuông góc với AB
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath