Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A K I B C 1 2 1 2
a) Do BI là tia phân giác \(\widehat{ABC}\)\(\Rightarrow\widehat{B_1}=\widehat{B_2}=\frac{\widehat{ABC}}{2}\)
CK là tia phân giác \(\widehat{ACB}\)\(\Rightarrow\widehat{C_1}=\widehat{C_2}=\frac{\widehat{ACB}}{2}\)
Mà \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}\left(1\right)\)
\(\Rightarrow\widehat{B_1}=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\)
Xét \(\Delta ABI\)và \(\Delta ACK\)có :
\(AB=AC\)( \(\Delta ABC\)cân tại A )
\(\widehat{B_1}=\widehat{C_1}\) ( CM trên )
Chung \(\widehat{BAC}\)
\(\Rightarrow\Delta ABI=\Delta ACK\left(g-c-g\right)\)
\(\Rightarrow AK=AI\) \(\Rightarrow\Delta AKI\)cân tại A
\(\Rightarrow\widehat{AKI}=\widehat{AIK}=\frac{180^o-\widehat{BAC}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{AKI}=\widehat{ABC}\)
Mà 2 góc đó ở vị trí đồng vị
\(\Rightarrow KI//BC\)(3)
Từ (1) và (3) \(\Rightarrow\)tứ giác BKIC là hình thang cân
b) Ta có \(KI//BC\Rightarrow\widehat{IKC}=\widehat{C_2}\)( so le trong )
Mà \(\widehat{C_2}=\widehat{C_1}\)
\(\Rightarrow\widehat{IKC}=\widehat{C_1}\)
\(\Rightarrow\Delta KIC\)cân tại I \(\Rightarrow IK=IC\)

A B C K I
a)Xét tam giác CKB và tam giác BIC có:
góc KCB = góc IBC(do CK và BI là phân giác góc ACB và góc ABC và tam giác ABC cân ở A)
BC chung
góc ABC=góc ACB(tam giác ABC cân)
=>tam giác CKB = tam giác BIC(g.c.g)
=>BK=CI và CK=BI
BK=CI=>AK=AI
=>tam giác AKI cân tại A
tam giác ABC cân tại A
=>góc AKI= góc AIK = góc ABC = góc ACB
=>IK song song BC =>BKIC là hình thang có BI=CK
=>BKIC là hình thang cân
b)IK song song với BC=>góc IKC=góc KCB
Mà góc KCB=góc KCI
=>góc IKC=góc KCI=>tam giác IKC cân tại I
=>IK=IC

a: Xét ΔABI và ΔACK có
\(\widehat{ABI}=\widehat{ACK}\)
AB=AC
\(\widehat{BAI}\) chung
Do đó: ΔABI=ΔACK
Suy ra: AI=AK
Xét ΔABC có AK/AB=AI/AC
nên KI//BC
Xét tứ giác BKIC có KI//BC
nên BKIC là hình thang
mà \(\widehat{KBC}=\widehat{ICB}\)
nên BKIC là hình thang cân
b: XétΔIKC có \(\widehat{IKC}=\widehat{ICK}\)
nên ΔIKC cân tại I
hay IK=IC

a) Xét ΔKBC và ΔHCB có:
\(\widehat{BKC}=\widehat{CHB}=90\left(gt\right)\)
BC: cạnh chung
\(\widehat{KBC}=\widehat{HCB}\left(gt\right)\)
=> ΔKBC=ΔHCB(ch-gn)
=>BK=HC
b) Có: AB=AK+KB
AC=AH+HC
Mà: AB=AC(gt); BK=HC(gt0
=>AK=AH
=>ΔAKH cân tại A
=>\(\widehat{AKH}=\frac{180-\widehat{A}}{2}\) (1)
Vì ΔABC cân tại A
=>\(\widehat{ABC}=\frac{180-\widehat{A}}{2}\) (2)
Từ (1)(2) suy ra: \(\widehat{AKB}=\widehat{ABC}\) . Mà hai góc này ở vị trí đồng vị
=> KH//BC
Mà \(\widehat{B}=\widehat{C}\left(gt\right)\)
=>BCHK là hình thang cân
a) ta có tam giác ABC cân tại A => hai đường cao BH vafCK cũng bằng nhau
b) ta có tam giác HBC = tam gác KCB
=> BK=CH
mặt khác KH//BC
=> BCHK là hình thang cân
c) góc BAC=40
=> B=C=(180-40):2=70
ta có K+B=180
=> K=H=180-70=110

B1:
a) xét 2 tam giác vuông ABH và ACK có:
góc BAC chung
AB = AC (gt)
góc ABH = góc ACK (cùng phụ vs góc ABC)
=> tam giác ABH = tam giác ACK (g.c.g)
b) tam giác ABH = tam giác ACK (câu a)
=> AK = AH mà AB = AC = AK + BK = AH + CH => BK = CH (1)
do AK = AH => tam giác AKH cân tại A => góc AKH = góc AHK = (1800 - góc BAC) : 2 (*)
ta có: góc ABC = góc ACB = (1800 - góc BAC ) : 2 (**)
từ (*) và (**) => góc ABC = góc AKH (đồng vị ) => BC // KH (2)
từ (1) và (2) => tứ giác BCHK là hình thang đều
t i c k nhé!! 3543645767658587687689698797808657568568

Hình tự vẽ nha.
Lời giải:
+ Xét\(\Delta AHB\)và\(\Delta AKC\)có:
\(\widehat{AHB}=\widehat{AKC}=90^0\)
\(AB=AC\)(Do\(\Delta ABC\)cân tại A)
\(\widehat{HAB}=\widehat{KAC}\)
Do đó:\(\Delta AHB=\Delta AKC\)(g-c-g)
\(\Rightarrow AH=AK\)
\(\Rightarrow\Delta AHK\)cân tại A
\(\Rightarrow\widehat{AKH}=\frac{180^0-\widehat{A}}{2}\)
Mà\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(Do\(\Delta ABC\)cân tại A)
\(\Rightarrow\widehat{AKH}=\widehat{ABC}\)
\(\Rightarrow HK//BC\)
+Xét tứ giác BCKH có\(HK//BC\)
=> BCHK là hình thang
Mà\(\widehat{B}=\widehat{C}\)(Do\(\Delta ABC\)cân tại A)
=> BCHK là hình thang cân (đpcm)
Vậy BCHK là hình thang cân

Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC

a)Tam giác KBC=tam giácHCB(cạnh huyền góc nhọn)
=>BH=CK ; BK=CH
Mà AB=AC=>AK=KH=>Tam giác AKH cân tại A
=>Góc AKH=Góc KBC mà 2 góc đồng vị
=>KH//BC=>KHCB là hình thang,có BH=CK
=>KHCB là hình thang cân
b)Tứ giác KIBM có:KH=BM ; KH//BM
=>KHBM là hình bình hành
=>KB=HM
Mà HC=KB
=>HC=MH=> Tam giác HMC cân tại H
c)Để A,O,M thẳng hàng thì tam giác ABC phải là tam giác đều (bạn tự chứng minh nha)
Chúc bạn học tốt!!
a: Xét ΔABI và ΔACK có
\(\widehat{ABI}=\widehat{ACK}\)
AB=AC
góc BAI chung
Do đó: ΔABI=ΔACK
Suy ra: AI=AK
Xét ΔABC có AK/AB=AI/AC
nên KI//BC
Xét tứ giác BKIC có KI//BC
nên BKIC là hình thang
mà KC=BI
nên BKIC là hình thang cân
b: Xét ΔIKC có \(\widehat{IKC}=\widehat{ICK}\)
nên ΔIKC cân tại I