Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề số 2 (cấu trúc mới) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Một thùng trong đó có 19 hộp đựng bút màu đỏ, 15 hộp đựng bút màu xanh. Số cách khác nhau để chọn được đồng thời một hộp màu đỏ, một hộp màu xanh là
Một thùng giấy trong đó có 7 hộp đựng bút màu khác nhau. Số cách chọn hai hộp từ 7 hộp đựng bút trên là
Trong mặt phẳng tọa độ Oxy, tâm I và bán kính R của đường tròn(C):x2+y2−2x+6y−8=0 là
Phương trình nào sau đây là phương trình chính tắc của đường hypebol?
Số gần đúng của 10 khi quy tròn đến hàng phần trăm (dùng máy tính cầm tay) là
Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bảng phân bố tần số sau:
Tiền lương (đồng) | 5 000 000 | 6 000 000 | 7 000 000 | 8 000 000 | 9 000 000 | 10 000 000 |
Tần số | 26 | 34 | 20 | 10 | 5 | 5 |
Mốt của bảng phân bố tần số trên là
Chọn ngẫu nhiên một số nguyên dương nhỏ hơn 35. Xác suất để số được chọn chia hết cho 5 là
Đường tròn tâm I(3;−7), bán kính R=3 có phương trình là
Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có phương trình x2+y2−4x+2y=0 và điểm M(1;1) thuộc đường tròn (C). Phương trình tiếp tuyến của đường tròn (C) tại điểm M(1;1) là đường thẳng
Một hộp chứa 11 quả cầu trong đó có 5 quả màu xanh và 6 quả đỏ. Chọn ngẫu nhiên đồng thời 2 quả cầu từ hộp đó. Xác suất để chọn ra 2 quả cùng màu bằng
Phương trình đường tròn có tâm A(2;−5) và tiếp xúc với đường thẳng d:3x−4y−1=0 là
Phương trình chính tắc của hypebol (H) có một tiêu điểm (−5;0) và độ dài trục thực 2a=8 là
Cho elip (E) biết tiêu cự bằng 6 và trục nhỏ là 2b=8.
(Nhấp vào dòng để chọn đúng / sai)Tiêu điểm F1(0;−3);F2(0;−3). |
|
Độ dài trục lớn bằng 5. |
|
Tổng khoảng cách từ điểm thuộc elip có hoành độ x=2 đến hai tiêu điểm bằng 10. |
|
Phương trình elip (E) là 16x2+25y2=400. |
|
Tỉ lệ trẻ suy dinh dưỡng (tính theo cân nặng ứng với độ tuổi) của 10 tỉnh thuộc Đồng bằng sông Hồng được cho như sau:
5,5; 13,8; 10,2; 12,2; 11,0; 7,4; 11,4; 13,11; 2,5; 13,4
(Theo Tổng cục thống kê)
(Nhấp vào dòng để chọn đúng / sai)Khoảng biến thiên của mẫu số liệu là R=8,3. |
|
Trung vị của mẫu số liệu là Q2=9,2. |
|
Số trung bình của mẫu số liệu là x=11,05. |
|
Độ lệch chuẩn của mẫu số liệu là s≈2,57. |
|
Cho tập S={1;2;3;4;5}.
(Nhấp vào dòng để chọn đúng / sai)a) Lập được 60 số có 3 chữ số khác nhau từ tập S. |
|
b) Lập được 9 số có 5 chữ số khác nhau lấy từ tập S, sao cho số đó chia hết cho 5 và số đứng đầu là 1. |
|
c) Lập được 100 số có 3 chữ số từ tập S nhỏ hơn 225. |
|
d) Lập được 320 số có 4 chữ số từ tập S sao cho số các chữ số giống nhau không được đứng cạnh nhau. |
|
Một hộp có 5 viên bi xanh, 6 viên bi đỏ và 7 viên bi vàng. Xét phép thử chọn ngẫu nhiên 3 viên bi.
(Nhấp vào dòng để chọn đúng / sai)Không gian mẫu của phép thử là: 816. |
|
Xác suất để chọn được 3 viên bi đỏ là 2721. |
|
Xác suất để chọn được 3 viên bi gồm 3 màu là 13635. |
|
Xác suất chọn được nhiều nhất 2 viên bi xanh là 408403. |
|
Số dân ở thời điểm hiện tại của một tỉnh là 1 triệu người. Tỉ lệ tăng dân số hàng năm của tỉnh đó là 5%. Sử dụng hai số hạng đầu tiên trong khai triển của (a+b)n để ước tính sau bao nhiêu năm thì số dân của tỉnh đó là 1,2 triệu người?
Trả lời:
Có bao nhiêu số tự nhiên chẵn gồm hai chữ số khác nhau? Tính tổng của tất cả các số đó.
Trả lời:
Trong mặt phẳng tọa độ Oxy, cho Elip (E) có phương trình chính tắc: 9x2+1y2=1 và điểm A(3;0). Cho các điểm B(xB;yB),C(xC;yC) thuộc (E) sao cho tam giác ABC vuông cân tại A, biết B có tung độ dương. Tính tổng 3xB+2xC+yB+yC.
Trả lời:
Để chụp toàn cảnh, ta có thể sử dụng một gương hypebol. Máy ảnh được hướng về phía đỉnh của gương và tâm quang học của máy ảnh được đặt tại một tiêu điểm của gương (xem hình).
Tìm khoảng cách từ quang tâm của máy ảnh đến đỉnh của gương, biết rằng phương trình cho mặt cắt của gương là 25x2−16y2=1. (Làm tròn đến chữ số thập phân thứ hai)
Trả lời:
Trong mặt phẳng toạ độ Oxy, vị trí của một chất điểm K tại thời điểm t (với 0≤t≤180) có toạ độ là (3+2cost∘;4+2sint∘). Biết quỹ đạo chuyển động của chất điểm K là đường tròn tâm I(a;b), bán kính R. Tính a+b+R.
Trả lời:
Trong một dịp quay xổ số, có ba loại giải thưởng: 1 000 000 đồng, 500 000 đồng, 100 000 đồng. Nơi bán có 100 tờ vé số, trong đó có 1 vé trúng thưởng 1 000 000 đồng, 5 vé trúng thưởng 500 000 đồng, 10 vé trúng thưởng 100 000 đồng. Một người mua ngẫu nhiên 3 vé. Tính xác suất của biến cố "Người mua đó trúng thưởng ít nhất 300 000 đồng". (Làm tròn kết quả tới chữ số thập phân thứ ba)
Trả lời: