Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hai mệnh đề P: "a và b cùng chia hết cho 5" và Q: "a+b chia hết cho 5". Phát biểu mệnh đề P⇒Q là
Tập hợp nào sau đây là tập rỗng?
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Cặp số (2;3) là nghiệm của bất phương trình nào sau đây?
Tọa độ đỉnh của parabol y=−3x2+2x+1 là
Giá trị của B=cos273∘+cos287∘+cos23∘+cos217∘ là
Cho tam giác ABC với BC=7 cm, AC=9 cm, AB=4 cm. Giá trị cosA bằng
Tam giác ABC có A=105∘, B=45∘, AC=10. Độ dài cạnh AB bằng
Trong các câu sau, câu nào là mệnh đề chứa biến và không phải mệnh đề?
Cho số thực a<0. Điều kiện cần và đủ để (−∞;9a)∩(a4;+∞)=∅ là
Phần tô màu trong hình vẽ (không bao gồm đường thẳng nét đứt) là miền nghiệm của bất phương trình nào sau đây?
Miền nghiệm của hệ bất phương trình {2x+3y≤13x−y≥8 là phần không tô màu (có tính cả biên) của hình vẽ nào trong các hình vẽ sau?




Cho ba tập A=[−2;0], B={x∈R−1<x<0}, C={x∈R∣x∣<2}.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) B=(−1;0). |
|
b) C=(−∞;−2)∪(2;+∞). |
|
c) A∩C=(−2;0]. |
|
d) (A∩C)\B=(−2;−1]. |
|
Cho A là tập hợp các học sinh lớp 10 đang học ở trường X và B là tập hợp các học sinh đang học môn Tiếng Anh của trường X.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) A∩B là tập hợp các học sinh lớp 10 học môn Tiếng Anh ở trường X. |
|
b) A\B là tập hợp những học sinh lớp 10 và không học Tiếng Anh ở trường X. |
|
c) A∪B là tập hợp các học sinh lớp 10 và học sinh học môn Tiếng Anh ở trường X. |
|
d) B\A là tập hợp các học sinh học lớp 10 ở trường X nhưng không học môn Tiếng Anh. |
|
Bác Minh có kế hoạch đầu tư không quá 240 triệu đồng vào hai khoản X và khoản Y. Để đạt được lợi nhuận thì khoản Y phải đầu tư ít nhất 40 triệu đồng và số tiền đầu tư cho khoản X phải ít nhất gấp ba lần số tiền cho khoản Y.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Gọi x,y (đơn vị: triệu đồng) lần lượt là số tiền bác Minh đầu tư vào khoản X và khoản Y, ta có hệ bất phương trình: ⎩⎨⎧x+y≤240y≥40x≥3y. |
|
b) Điểm C(200;40) không thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư. |
|
c) Điểm A(180;60) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư. |
|
d) Miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư là một tứ giác. |
|
Cho góc α thoả mãn sinα=53.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) sin2α=259. |
|
b) cos2α=2516. |
|
c) cotα−tanαcotα+tanα=725. |
|
d) cos2α−sin2α1=257. |
|
Bạn Khương bản Mộc thống kê số ngày có mưa, có sương mù ở bản mình trong tháng 3 vào một thời điểm nhất định và được kết quả như sau: 14 ngày có mưa, 15 ngày có sương mù, trong đó 10 ngày có cả mưa và sương mù. Trong tháng 3 đó có bao nhiêu ngày không có mưa và không có sương mù?
Trả lời:
Để chuẩn bị cho đại hội chi đoàn 10A1, bạn Nga được phân công đi mua hoa để cắm vào 3 lọ, mỗi lọ cắm số hoa mỗi loại như nhau. Bạn Nga được lớp giao cho 200 nghìn đồng để mua nhưng đến quầy bán chỉ còn 2 loại hoa và đã mua đủ để cắm. Biết rằng một loại hoa có giá 15 nghìn đồng/bông và một loại có giá 20 nghìn/bông. Số tiền dư ra ít nhất có thể là bao nhiêu nghìn đồng?
Trả lời:
Có ba nhóm máy A, B, C dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại phải lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau:
Nhóm | Số máy trong mỗi nhóm | Số máy trong từng nhóm để sản xuất ra một đơn vị sản phẩm | |
Loại I | Loại II | ||
A | 10 | 2 | 2 |
B | 4 | 0 | 2 |
C | 12 | 2 | 4 |
Một đơn vị sản phẩm I lãi 3 nghìn đồng, một đơn vị sản phẩm loại II lãi 5 nghìn đồng. Phương án sản xuất x sản phẩm loại I và y sản phẩm loại II sẽ cho lãi cao nhất. Tính x+y.
Trả lời:
Tính giá trị nhỏ nhất của biểu thức F(x;y)=−x+4y với (x;y) thuộc miền nghiệm của hệ bất phương trình ⎩⎨⎧x≥1x≤2y≥0y≤3.
Trả lời:
Để xác định bán kính của chiếc đĩa cổ hình tròn bị vỡ một phần, các nhà khảo cổ lấy ba điểm A,B,C trên vành đĩa và tiến hành đo đạc thu được kết quả như sau: cạnh AB≈9,5 cm, ACB≈60∘.
Tính bán kính của chiếc đĩa. (Làm tròn kết quả đến chữ số thập phân thứ nhất của đơn vị cm)
Trả lời:
Cho các góc α,β thoả mãn 0∘<α,β<180∘ và α+β=90∘. Tính giá trị của biểu thức T=sin6α+sin6β+3sin2αsin2β.
Trả lời: