
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho f( x ) = x mũ 2005- 2006.x mũ 2004+ 2006.x mũ 2003-....- 2006.x mũ 2+ 2006.x mũ 1.
Tính f( 2005)

x=2005
nên x+1=2006
\(f\left(x\right)=x^{2005}-x^{2004}\left(x+1\right)+x^3\left(x+1\right)-...+x\left(x+1\right)\)
\(=x^{2005}-x^{2005}-x^{2004}+x^{2004}+...-x^3-x^2+x^2+x\)
=x=2005

Ta có :
\(x=2005\Rightarrow x+1=2006\)
Thay \(2006=x+1\) vào biểu thức trên ta được :
\(x^{2005}-\left(x+1\right)x^{2004}+\left(x+1\right)x^{2003}-\left(x+1\right)x^{2002}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2005}-x^{2005}+x^{2004}-x^{2004}+x^{2003}-...-x^3+x^2-x^2+x-1\)
\(=x-1\) mà \(x=2005\)
\(\Rightarrow x^{2005}-2006.x^{2004}+2006.x^{2003}-2006.x^{2002}+...-2006.x^2+2006x-1=2005-1=2004\)

\(\text{Ta có: }A=x^{2005}-2006x^{2004}+2006x^{2003}-2006x^{2002}+...-2006x^2+2006x-1.\)\(=x^{2005}-\left(2005+1\right)x^{2004}+\left(2005+1\right)x^{2003}-\left(2005+1\right)x^{2002}+...-\left(2005+1\right)x^2+\left(2005+1\right)x-1\) \(\text{Mà x=2005 nên: }A=x^{2005}-x^{2005}-x^{2004}+x^{2004}+x^{2003}-x^{2003}-x^{2002}+...-x^3-x^2+x^2+x-1\)
\(=x-1=2005-1=2004\)

x10 = 25x8
⇒ x10 − 25x8 = 0
⇒ x8.(x2 − 25) = 0
Suy ra x8 = 0 hoặc x2 - 25 = 0.
Do đó x = 0 hoặc x = 5 hoặc x = -5.
Vậy x ∈ {0; 5; −5}.

x = 2005
=> x + 1 = 2006
Đặt A = x2005 - 2006x2004 + 2006x2003 - 2006x2002 + .... - 2006x2 + 2006x - 1
= x2005 - (x + 1)x2004 + (x + 1)x2003 - (x + 1)x2002 + .... - (x + 1)x2 + (x + 1)x - 1
= x2005 - x2005 - x2004 + x2004 + x2003 - x2003 - x2002 + ... - x3 - x2 + x2 + x - 1
= x - 1
= 2005 - 1 = 2004
Vậy A = 2004

\(\left(0,1\right)^4.\left(0,1\right)^2.10^4\)
\(=\frac{1}{10^4}.10^4.\frac{1}{10^2}\)
\(=1.\frac{1}{100}=\frac{1}{100}\)
Ta có :
(0,1)4 x (0,1)2 x 104
=( 0,1 x 10)4 x 0,01
= 14 x 0,01
= 0,01

=>2006|x-1|+(x-1)2=2005|x-1|
=>|x-1|=(x-1)2
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=x-1\\\left(x-1\right)^2=-\left(x-1\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-2\right)=0\\x\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{0;1;2\right\}\)