Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có d1: 8x + 10y – 12 = 0
d2: 4x + 5y – 6 = 0
D = 8 . 5 – 4 . 10 = 0
Dx = 10. (-6) – (-12) . 5 = 0
Dy = (-12) . 4 – (-6) . 8 = 0
Vậy d1 trùng d2
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
) Ta có =
+
Nếu coi hình bình hành ABCd có =
=
và
=
=
thì
là độ dài đường chéo AC và
= AB;
= BC.
Ta lại có: AC = AB + BC
Đẳng thức xảy ra khi điểm B nằm giữa hai điểm A, C.
Vậy =
+
khi hai vectơ
,
cùng hướng.
b) Tương tự, là độ dài đường chéo AC
là độ dài đường chéo BD
=
=> AC = BD.
Hình bình hành ABCD có hai đường chéo bằng nhau nên nó là hình chữ nhật, ta có AD AB hay
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ = 0, ta có
+
= 0 =>
= –
Điều này chứng tỏ hai vectơ có cùng độ dài =
, cùng phương và ngược hướng
![](https://rs.olm.vn/images/avt/0.png?1311)
Trước hết ta có
= 3
=>
= 3 (
+
)
=> = 3
+ 3
=> – = 3
=> =
mà =
–
nên
=
(
–
)
Theo quy tắc 3 điểm, ta có
=
+
=>
=
+
–
=> = –
+
hay
= –
+
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi G là giao điểm của AK, BM thì G là trọng tâm của tam giác.
Ta có =
=>
=
= –
= –
= –
Theo quy tắc 3 điểm đối với tổng vec tơ:
=
+
=>
=
–
=
(
–
).
AK là trung tuyến thuộc cạnh BC nên
+
= 2
=>
–
+
= 2
Từ đây ta có =
+
=>
= –
–
.
BM là trung tuyến thuộc đỉnh B nên
+
= 2
=> –
+
= 2
=> =
+
.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có +
=
=
= a
Ta có: –
=
+
.
Trên tia CB, ta dựng =
=> –
=
+
=
Tam giác EAC vuông tại A và có : AC = a, CE = 2a , suy ra AE = a√3
Vậy =
= a√3
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng quy tắc 3 điểm đối với phép cộng vectơ:
=
+
=
+
=> +
=
+
+ (
+
)
ABCD là hình bình hành, hi vec tơ và
là hai vec tơ đối nhau nên:
+
=
Suy ra +
=
+
.
Mình có cách khác :
Áp dụng quy tắc 3 điểm đối với phép trừ vec tơ
=
–
=
–
=> +
= (
+
) – (
+
).
ABCD là hình bình hành nên và
là hai vec tơ đối nhau, cho ta:
+
=
Suy ra: +
=
+
.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta xét tổng:
+
+
+
+
+
=
=
(1)
Mặt khác, ta có ABIJ, BCPQ và CARS là các hình bình hành nên:
=
=
=
=> +
+
=
+
+
=
=
(2)
Từ (1) và (2) suy ra : +
+
=
(dpcm)
ta có: d1 :12x – 6y + 10 = 0 ;
d2= 2x – y – 7 = 0
D = 12 . (-1) -(-6).2 = -12 + 12 = 0
Dx = (-6) . (-7) – (-1). 10 = 42 + 10 = 52 ≠ 0
Vậy d1 // d2
ta có d1: 8x + 10y – 12 = 0
d2: 4x + 5y – 6 = 0
D = 8 . 5 – 4 . 10 = 0
Dx = 10. (-6) – (-12) . 5 = 0
Dy = (-12) . 4 – (-6) . 8 = 0
Vậy d1 trùng d2