Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]
+) Trên khoảng (-3; 1): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).
+) Trên khoảng (1; 3): đồ thị có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).
+) Trên khoảng (3; 7): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).
b) Xét hàm số \(y = 5{x^2}\) trên khoảng (2; 5).
Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).
Do \({x_1},{x_2} \in (2;5)\) và \({x_1} < {x_2}\) nên \(0 < {x_1} < {x_2}\), suy ra \({x_1}^2 < {x_2}^2\) hay \(5{x_1}^2 < 5{x_2}^2\)
Từ đây suy ra \(f({x_1}) < f({x_2})\)
Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).
![](https://rs.olm.vn/images/avt/0.png?1311)
Trục đối xứng của hàm số là: \(x = \frac{5}{2}.\)
Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {\frac{5}{2}; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;\frac{5}{2}} \right).\)
Chọn C.
![](https://rs.olm.vn/images/avt/0.png?1311)
Với x 1 ≠ x 2 ta có:
f x 2 - f x 1 x 2 - x 1 = - x 2 2 + 4 x 2 - 2 - - x 1 2 + 4 x 1 - 2 x 2 - x 1 = - x 2 2 - x 1 2 + 4 ( x 2 - x 1 ) x 2 - x 1 = - x 2 + x 1 + 4 .
· Với x 1 , x 2 ∈ - ∞ ; 2 thì x1 < 2; x2 <2 nên x 1 + x 2 < 4 ⇒ - x 1 + x 2 + 4 > 0 nên f(x) đồng biến trên khoảng - ∞ ; 2 .
· · Với x 1 , x 2 ∈ 2 ; + ∞ thì x1>2; x2 >2 nên x 1 + x 2 > 4 ⇒ - x 1 + x 2 + 4 < 0 nên f(x) nghịch biến trên khoảng 2 ; + ∞ .
Vậy đáp án là A.
Nhận xét: Với 4 phương án trả lời cho ta biết f(x) đồng biến hoặc nghịch biến trên mỗi khoảng - ∞ ; 2 và 2 ; + ∞ .
Vì vậy, ta lấy hai giá trị bất kì x 1 < x 2 thuộc mỗi khoảng rồi so sánh f x 1 và f x 2 . Chẳng hạn x 1 = 0 ; x 2 = 1 có f 0 = - 2 ; f 1 = 1 nên f 0 < f 1 , suy ra f(x) đồng biến trên khoảng - ∞ ; 2 .
![](https://rs.olm.vn/images/avt/0.png?1311)
Vẽ đồ thị \(y = 3x + 1;y = - 2{x^2}\)
a) Trên \(\mathbb{R}\), đồ thị \(y = 3x + 1\) đi lên từ trái sang phải, như vậy hàm số \(y = 3x + 1\) đồng biến trên \(\mathbb{R}\)
b) Trên khoảng \(\left( { - \infty ;0} \right)\), đồ thị \(y = - 2{x^2}\)đi lên từ trái sang phải với mọi \(x \in \left( { - \infty ;0} \right)\) , như vậy hàm số đồng biến trên \(\left( { - \infty ;0} \right)\)
Trên khoảng \(\left( {0; + \infty } \right)\), đồ thị \(y = - 2{x^2}\)đi xuống từ trái sang phải với mọi \(x \in \left( {0; + \infty } \right)\) , như vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\)
Đáp án A