![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Bảng biến thiên
Đồ thị hàm số
Đồ thị là đường thẳng đi qua 2 điểm:
+ Giao với trục tung P(0,-1)
+ Giao với trục hoành Q(2, 0)
b) Bảng biến thiên
Đồ thị hàm số
Đồ thị là đường thẳng đi qua 2 điểm:
+ Giao với trục tung P(0,4)
+ Giao với trục hoành Q(2, 0)
c) y=√x2y=x2 = |x| ={−x,x≤0x,x>0{−x,x≤0x,x>0
Bảng biến thiên
Đồ thị hàm số
d) y = |x+1| = {−x−1,x≤−1x+1,x>−1{−x−1,x≤−1x+1,x>−1
Bảng biến thiên
Đồ thị hàm số
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có thể viết
\(y=\left\{{}\begin{matrix}2x-3;\left(x\ge\dfrac{3}{2}\right)\\-2x+3;\left(x< \dfrac{3}{2}\right)\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tập xác định D = R
Bảng biến thiên
Đồ thị hàm số
Đồ thị: parabol có đỉnh I(1, -2) với trục đối xứng x = 1
Giao điểm với trục tung là P(0,-1)
Giao điểm với trục hoành A (1-√2, 0) và B((1+√2, 0)
b)
Tập xác định D = R
Đồ thị hàm số
Đồ thị: parabol có đỉnh I \(\left(\dfrac{3}{2},\dfrac{17}{4}\right)\)với trục đối xứng \(x=\dfrac{3}{2}\)
Giao điểm với trục tung là P(0,2)
Giao điểm với trục hoành A \(\left(\dfrac{3-\sqrt{17}}{2},0\right)\) và B\(\left(\dfrac{3+\sqrt{17}}{2},0\right)\)