
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


♦ |a| > 1: phương trình (1) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn sinα = a.
Khi đó phương trình (1) có các nghiệm là
x = α + k2π, k ∈ Z
và x = π-α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và sinα = a thì ta viết α = arcsin a.
Khi đó các nghiệm của phương trình (1) là
x = arcsina + k2π, k ∈ Z
và x = π - arcsina + k2π, k ∈ Z.


`TXĐ: R`
`@` Nếu `x > 2` thì: `f(x)=2x+1`
H/s xác định trên `(2;+oo)`
`=>` H/s liên tục trên `(2;+oo)`
`@` Nếu `x < 2` thì: `f(x)=x^2-3x+4`
H/s xác định trên `(-oo;2)`
`=>` H/s liên tục trên `(-oo;2)`
`@` Nếu `x=2` thì: `f(x)=5`
`lim_{x->2^[-]} (x^2-3x+4)=2`
`lim_{x->2^[+]} (2x+1)=5`
Vì `lim_{x->2^[-]} f(x) ne lim_{x->2^[+]} f(x) =>\cancel{exists} lim_{x->2} f(x)`
`=>` H/s gián đoạn tại `x=2`
KL: H/s liên tục trên `(-oo;2)` và `(2;+oo)`
H/s gián đoạn tại `x=2`

a: \(\lim\limits_{x\rightarrow-2}f\left(x\right)=\lim\limits_{x\rightarrow-2}3x^2-2x+4\)
\(=3\cdot\left(-2\right)^2-2\cdot\left(-2\right)+4\)
\(=3\cdot4+4+4=20\)
\(f\left(-2\right)=3\cdot\left(-2\right)^2-2\left(-2\right)+4=20\)
=>\(\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)\)
=>Hàm số liên tục tại x=-2
b: \(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}2x^3-3x^2+1\)
\(=2\cdot3^3-3\cdot3^2+1\)
\(=2\cdot27-27+1=27+1=28\)
\(f\left(3\right)=2\cdot3^3-3\cdot3^2+1=54-27+1=28\)
=>\(\lim\limits_{x\rightarrow3}f\left(x\right)=f\left(3\right)\)
=>Hàm số liên tục tại x=3

Giả sử \(f\left(x\right)\) có bậc k \(\Rightarrow f'\left(x\right)\) có bậc \(k-1\) và \(f''\left(x\right)\) có bậc \(k-2\)
\(\Rightarrow f''\left(x\right)+3x^2-5\) có bậc lớn nhất bằng \(max\left\{k-2;2\right\}\)
\(\Rightarrow k-1=max\left\{k-2;2\right\}\Rightarrow k-1=2\) (do \(k-1\ne k-2\) với mọi k)
\(\Rightarrow f\left(x\right)\) là đa thức bậc 3 có dạng: \(y=ax^3+bx^2+cx-5\) với \(a\ne0\)
\(3ax^2+2bx+c=6ax+2b+3x^2-5\)
\(\Leftrightarrow3ax^2+2bx+c=3x^2+6ax+2b-5\)
Đồng nhất 2 vế: \(\left\{{}\begin{matrix}3a=3\\2b=6a\\c=2b-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\\c=1\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=x^3+3x^2+x-5\)
Đặt \(sin^2x=t\Rightarrow0\le t\le1\)
\(f\left(t\right)=0\Leftrightarrow t^3+3t^2+t-5=0\)
\(\Leftrightarrow\left(t-1\right)\left(t^2+4t+5\right)=0\Rightarrow t=1\)
\(\Rightarrow sin^2x=1\Leftrightarrow cosx=0\)
\(\Rightarrow x=\frac{\pi}{2}+k\pi\)
\(\Rightarrow\frac{\pi}{2}+k\pi\le2020\Rightarrow k\le\frac{4040-\pi}{2\pi}\)
\(\Rightarrow k_{max}=642\Rightarrow x_{max}=\frac{\pi}{2}+642\pi\)