K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2015

Bạn Sáng nói bạn ấy chỉ mới học lớp 6 mà giải được? Đồ coi theo, đồ copy...Tui xem thường..##@@

6 tháng 1 2016

Vì  \(a\)  không chia hết cho  \(3\) nên  \(a\) có dạng \(a=3k+1\) hoặc \(a=3k+2\)   \(\left(k\in Z\right)\)

Nếu  \(a=3k+1\)  thì  \(a^2=\left(3k+1\right)^2=9k^2+6k+1\)  chia  \(3\)  dư  \(1\)   

Nếu  \(a=3k+2\)  thì  \(a^2=\left(3k+2\right)^2=9k^2+9k+8\)  chia  \(3\)  dư  \(1\)   

Vậy,  nếu  \(a\)  không chia hết cho  \(3\)   thì  \(a^2\)  chia  \(3\)  dư  \(1\)   \(\left(1\right)\)

Tương tự,   ta cũng có nếu  \(b\) không chia hết cho  \(3\) thì  \(b^2\) chia  \(3\)  dư  \(1\)  \(\left(2\right)\)

Từ   \(\left(1\right)\) và  \(\left(2\right)\) , suy ra  \(a^2-b^2\)  chia hết cho  \(3\)   \(\left(3\right)\)

Ta có:   \(a^6-b^6=\left(a^2-b^2\right)\left[\left(a^2\right)^2+a^2b^2+\left(b^2\right)^2\right]=\left(a^2-b^2\right)\left[\left(a^2\right)^2-2a^2b^2+\left(b^2\right)^2+3a^2b^2\right]\)

\(=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\)

Theo  chứng minh trên,   \(a^2-b^2\)  chia hết cho  \(3\)  nên   \(\left(a^2-b^2\right)^2\)  chia hết cho  \(3\)  

Lại có:   \(3a^2b^2\)  chia hết cho  \(3\)  với mọi  \(a;b\in Z\)

nên   \(\left(a^2-b^2\right)+3a^2b^2\)  chia hết cho  \(3\)   \(\left(4\right)\)

Từ  \(\left(3\right)\)  và  \(\left(4\right)\)  suy ra  \(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\)  chia hết cho   \(3.3\)  hay  \(a^6-b^6\)  chia hết cho  \(9\)  \(\left(đpcm\right)\)

 

 

6 tháng 1 2016

a^6-b^6=(a^3-b^3)(a^3+b^3)=(a-b)(a^2+ab+b^2)(a+b)(a^2-ab+b^2)       dung hang dang thuc

Vi a,b ko chia het cho 3 (1)

suy ra TH1 a=3k+1, b=3q+2 hoacTH2 a=3k+2, b=3q+1

TH1

a+b=3k+3q+3 chia het cho 3 

a^2 va b^2 la so chinh phuong nen chia 3 du 0 hoac 1 ma a,b ko chia het cho 3

suy ra a^2, b^2 chia 3 du 1

suy ra a^2+b^2 chia 3 du 2

Lai co a=3k+1, b=3q+2 suy ra ab chia 3 du 2

Tu do suy ra a^2-ab+b^2 chia het cho 3  (2)

tu 1 va 2 so chia het cho 9

TH2 tuong tu

 

25 tháng 10 2015

Có        

29 tháng 6 2015

718+18.3-1=717.7+17.3+3-1=717+17.3-1+717.6+3=(717+17.3-1)+9.717-3.717+3

                                                                       =(717+17.3-1)+9.717-3(717-1)

Ta có  717-1 chia hết cho 6 => 3(717-1) chia hết cho 18=> chia hết cho 9

Mặt khác 717+17.3-1 và 9.717 chia hết cho 9 => 718+18.3-1 chia hết cho 9

 

7 tháng 5 2016

Tại sao  717 - 1 lại chia hết cho 6 vậy Thái Hồ?

19 tháng 9 2018

Vì a, b không chia hết cho 3 nên a, b có dạng \(3k+1\) hoặc \(3k+2\) \(\left(k\inℤ\right)\)

* Nếu \(a=3k+1\)\(\Rightarrow\)\(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1 

\(b=3k+1\)\(\Rightarrow\)\(b^2=\left(3k+1\right)^2=9k^2+1\) chia 3 dư 1 

* Nếu \(a=3k+2\)\(\Rightarrow\)\(a^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1 

\(b=3k+2\)\(\Rightarrow\)\(b^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1 

\(\Rightarrow\)\(a^2,b^2\) chia 3 dư 1 

\(\Rightarrow\)\(a^2-b^2⋮3\)

Lại có : 

\(a^6-b^6=\left(a^2\right)^3-\left(b^2\right)^3=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=\left(a^2-b^2\right)\left[\left(a^4-2a^2b^2+b^4\right)+3a^2b^2\right]\)

\(=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]\)

Xét \(\left(a^2-b^2\right)⋮3\)

\(\Rightarrow\)\(\left(a^2-b^2\right)^2⋮3\)

\(\Rightarrow\)\(\left(a^2-b^2\right)^2+3a^2b^2⋮3\)

\(\Rightarrow\)\(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]⋮9\)

Hay \(a^6-b^6⋮9\) ( đpcm ) 

Chúc bạn học tốt ~ 

15 tháng 8 2016

\(A=7^{18}+18.3-1=\left(7^{17}+17.3-1\right)+6.7^{17}+3\)

\(7^3\text{≡}1\left(mod9\right)\)

\(\Rightarrow\left(7^3\right)^5.7^2\text{≡}7^2\left(mod9\right)\)

\(7^{17}.6\text{≡}49.6\text{≡}6\left(mod9\right)\)

\(\Rightarrow6.7^{17}+3\text{≡}6+3\text{≡}0\left(mod9\right)\)

\(\Rightarrow A\)chia hết cho 9

27 tháng 7 2018

Vì a không chia hết cho 3 => a có dạng 3k+1 hoặc 3k+2 (k thuộc Z)

- Nếu \(a=3k+1\Rightarrow a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1

- Nếu \(a=3k+2\Rightarrow a^2=\left(3k+2\right)^2=9k^2+12k+1\) chia 3 dư 1

=> nếu a không chia hết cho thì a2 chia 3 dư 1 (1)

CM tương tự ta có nếu b không chia hết cho 3 thì b2 chia 3 dư 1 (2)

Từ (1) và (2) => \(a^2-b^2⋮3\) (3)

Lại có: \(a^6-b^6=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=\left(a^2-b^2\right)\left(a^4-2a^2b^2+b^4+3a^2b^2\right)=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]\)

Từ (3) => \(\left(a^2-b^2\right)^2⋮3\)

Mà \(3a^2b^2⋮3\)

\(\Rightarrow\left(a^2-b^2\right)^2+3a^2b^2⋮3\) (4)

Từ (3) và (4) => \(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]⋮3.3=9\) hay \(a^6-b^6⋮9\) (đpcm)

10 tháng 11 2016

em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122

11 tháng 11 2016

em cam on thay a