Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi \(ƯCLN\)(n+8 và 2n-5) là d
\(\Rightarrow\int^{n+8}_{2n-5}\) chia hết cho d
\(\Rightarrow\int^{2\left(n+8\right)}_{1\left(2n-5\right)}\) chia hết cho d
\(\Rightarrow\int^{2n+16}_{2n-5}\) chia hết cho d
\(\Rightarrow2n+16-\left(2n-5\right)\)chia hết cho d
\(\Rightarrow2n+16-2n+5\) chia hết cho d
\(\Rightarrow11\) chai hết cho d \(\in\) \(ƯCLN\)\(\left(11\right)=\left\{+-11,+-1\right\}\)
Rồi bạn lập bảng tính như thường, chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
mik thì trúng đề thì có con này, mik ko bt làm những thầy cô giáo mik bảo có vô số n thuộc n để p/s tối giản
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để A là phân số tối giản thì UCLN(2n+7, 5n+2)=1
Đặt UCLN(2n+7, 5n+2)=d
=>2n+7\(⋮d\)=>5(2n+7)=>10n+35 \(⋮d\)
5n+2\(⋮d\)=>2(5n+2)=>10n+4 \(⋮d\)
Vì 10n+35 \(⋮d\), 10n+4\(⋮d\)=>(10n+35)-(10n+4)
=(10n-10n)+(35-4)=35-4=31 \(⋮d\)=>\(d\in\left\{1;31\right\}\)
Để 2n+7/5n+2 là phân số tối giản thì UCLN(2n+7, 5n+2)=1
Để 2n+7 và 5n+2 không cùng chia hết cho 31 thì n\(\ne12,43,74,105,...\)(mỗi số có khoảng cách với nhau là 31 đơn vị)
Vậy để A là phân số tối giản thì \(n\inℕ,n\ne12,43,74,105,136,...\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi d thuộc ƯC{2n+3,3n+5}
2n+3 chia hết cho d suy ra 3.[2n+3] chia hết cho d hay 6n+6 chia hết cho d
3n+5 chia hết cho d suy ra 2[3n+5] chia hết cho d hay 6n+10 chia hết cho d
vậy 6n+6-6n+10 chia hết cho d
4 chia hết cho d suy ra d thuộc Ư{4}
nhưng d là ươc của số lẻ nên d chỉ có thể là 1
vây phân số trên là phân số tối giản
TÍCH MÌNH NHÉ!
phân số tối giản tức là có tử và mẫu nguyên tố cùng nhau
gọi UCLN(2n+3;3n+5) là d(d thuộc N)
=>2n+3 chia hết cho d=>3(2n+3) chia hết cho d=>6n+9 chia hết cho d
3n+5 chia hết cho d=>2(3n+5) chia hết cho d=>6n+10 chia hết cho d
=>6n+10-(6n+9) chia hết cho d=>1 chia hết cho d=> d thuộc U(1)=>vì d thuộc N nên d =1
=> UCLN(2n+3;3n+5)=1
=>2n+3 và 3n+5 nguyên tố cùng nhau
vậy phân số 2n+3/3n+5 là phân số tối giản
Gọi \(\text{ƯCLN( n+8 ; 2n+5 )}\) \(=d\left(d\in\text{N*}\right)\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\text{n + 8 ⋮ d}\\\text{2n - 5 ⋮ d}\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\text{2n + 16 ⋮ d}\\\text{2n - 5 ⋮ d}\end{matrix}\right.\)
\(\Rightarrow\) \(\text{2n + 16 – (2n-5) ⋮ d}\)
\(\Rightarrow\text{21 ⋮ d }\)
\(\Rightarrow\) \(\text{d }\in\left\{\text{1 ; 3 ; 7}\right\}\)
Nếu \(\text{d = 3}\)
\(\Rightarrow\) \(\text{n+8 ⋮ 3}\)
\(\Rightarrow\) \(\text{n + 8 = 3k ( k ∈ N*)}\)
\(\Rightarrow\) \(\text{n = 3k – 8}\)
\(\Rightarrow\) \(\text{2n – 5 = 2(3k – 8) – 5 = 6k – 16 – 5 = 6k – 21 = 3(2k – 7) ⋮ 3}\)
Vậy n khác \(\text{2k – 7}\) thì \(\text{n+8/2n -5}\) tối giản
cứu mình với ;-;