K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để đồ thị hàm số y=(3m+2)x+2 song song với đường thẳng y=-x-2 thì \(\left\{{}\begin{matrix}3m+2=-1\\2\ne-2\left(nhận\right)\end{matrix}\right.\)

=>3m=-1-2=-3

=>m=-1

2 tháng 8 2020

Ta có \(y'=\frac{x^2-2mx+m^2}{\left(x-2m\right)^2},x\ne2m\)

Để y có hai khoảng đồng biến trên toàn miền xác định thì

\(y'\ge0,\forall x\ne2m\)

\(\Leftrightarrow x^2-4mx+m^2\ge0,\forall x\ne2m\)

\(\Leftrightarrow\Delta'\le0\Leftrightarrow4m^2-m^2\le0\)

\(\Leftrightarrow3m^2\le0\Leftrightarrow m=0\)

Câu tiếp theo:

y đồng biến trên\(\left(1,\infty\right)\Leftrightarrow y'\ge0,\forall x\in\left(1,+\infty\right)\)

     \(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=x^2-4mx+m^2\ge0,\forall x>1\\2m\notin\left(1,\infty\right)\end{cases}}\)

Để cj suy nghĩ mai lm tiếp=.=

2 tháng 8 2020

rõ ràng m=0 thì đk trên thõa mãn.

Với \(m=0:\Delta'=3m^2>0\) nên ta có:

\(f\left(x\right)\ge0,\forall x>1\Leftrightarrow x_1< x_2\le1\)

\(\Leftrightarrow\hept{\begin{cases}\Delta'>0\\f\left(1\right)\ge\\\frac{S}{2}-1< 0\end{cases}0}\)

\(f\left(1\right)\ge0\Leftrightarrow m^2-4m+1\ge0\Leftrightarrow m\le2-\sqrt{3}\)hay\(m\ge2+\sqrt{3}\)

\(\frac{S}{2}-1< 0\Leftrightarrow2m-1< 0\Leftrightarrow m< \frac{1}{2}\)

\(2m\notin\left(1,\infty\right)\Leftrightarrow2m\le1\Leftrightarrow m\le\frac{1}{2}\)

Vậy \(m\le2-\sqrt{3}\)là giá trị m cần tìm

26 tháng 6 2016

\(\left|2m^2-7\right|-27=-2\)

\(\Rightarrow\left|2m^2-7\right|=25\)

\(\Rightarrow\left[\begin{array}{nghiempt}2m^2-7=25\\7-2m^2=25\left(loại\right)\end{array}\right.\)

\(\Rightarrow m=\pm4\)

19 tháng 8 2016

\(\left|2m^2-7\right|-27=-2\)

\(\Leftrightarrow\left|2m^2-7\right|=25\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2m^2-7=25\\7-2m^2=25\left(loai\right)\end{array}\right.\)

\(\Leftrightarrow m=\pm4\)

19 tháng 8 2016

ĐTHS trên đi qua M(1;-2) tức là \(-2=\left|2m^2-7\right|-27\Leftrightarrow\left|2m^2-7\right|=25\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2m^2-7=25\\2m^2-7=-25\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}2m^2=32\left(\text{nhận}\right)\\2m^2=-18\left(\text{loại}\right)\end{array}\right.\)\(\Leftrightarrow m^2=16\Leftrightarrow m=\pm4\)

Bài 2: 

a: \(=6x^2+30x+x+5-\left(6x^2-3x-10x+5\right)\)

\(=6x^2+31x+5-6x^2+13x-5=18x⋮6\)

b: \(=x^3+2x^2+3x^2+6x-x-2-x^3+2\)

\(=5x^2+5x=5x\left(x+1\right)⋮2\)

cái trên thì bn dùng BĐT Bunhiakovshi nha

cái dưới hơi rườm tí mik ko bt lm đúng ko

19 tháng 9 2019

\(f\left(x\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)\)

\(f\left(x-1\right)=\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)

\(\Rightarrow f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)-\)

\(\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)

\(=x\left(x+1\right)\left[\left(x+2\right)\left(ax+b\right)-\left(x-1\right)\left(ax-a+b\right)\right]\)

\(=x\left(x+1\right)[x\left(ax+b\right)+2\left(ax+b\right)-x\left(ax-a+b\right)\)

\(+\left(ax-a+b\right)]\)

\(=x\left(x+1\right)(ax^2+bx+2ax+2b-ax^2+ax\)

\(-bx+ax-a+b)\)

\(=x\left(x+1\right)\left(4ax-a+3b\right)\)

Mà theo đề \(f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)

Đồng nhất hệ số là ra 

20 tháng 7 2016

\(C=\left(x^3+y^3\right)+3xy\left(x^2+y^2+2xy\left(x+y\right)\right)\)

\(C=\left(x^3+y^3+3x^2y+3xy^2-3x^2y-3xy^2\right)+3xy\left(x^2+y^2+2xy\right)\) (vì x+y=1)

\(C=\left(x+y\right)^3-3x^2y-3xy^2+3xy\left(x+y\right)^2\)

\(C=1^3-3xy\left(x+y\right)+3xy.1^2\) (vì x+y=1)

\(C=1-3xy+3xy\)(vì x+y=1)

\(C=1\)

\(D=2\left(\left(x+y\right)^3-3xy\left(x+y\right)\right)-3\left(\left(x+y\right)^2-2xy\right)\)

\(D=2\left(1^3-3xy\right)-3\left(1^2-2xy\right)\)(vì x+y=1)

\(D=2-6xy-3+6xy\)

\(D=-1\)

Câu 1: Phân tích thành nhân tử:a. \(x^4+x\left(2016x+1\right)-2016\left(x-1\right)\)b. \(\left(x^2\left(y+1\right)+4\right)^2-\left(4x^2+y+1\right)^2\)c. \(x^4+4\)d. \(x^4+x^2+2x+6\)Câu 2:a. Cho \(x=a+\frac{1}{a};y=b+\frac{1}{b};z=ab+\frac{1}{ab}\left(a,b\ne0\right)\)Tính giá trị của \(M=x^2+y^2+z^2-xyz\)b.Cho hai số a,b thoả a-b=ab=1. Tính giá trị của \(N=a^6+2a^4b^2+a^2b^4+9b^2+1989\)c.1.1. Cho đa thức \(P\left(x\right)=x^2-\left(m^2-2\right)x+m-35\)Xác định m...
Đọc tiếp

Câu 1: Phân tích thành nhân tử:

a. \(x^4+x\left(2016x+1\right)-2016\left(x-1\right)\)

b. \(\left(x^2\left(y+1\right)+4\right)^2-\left(4x^2+y+1\right)^2\)

c. \(x^4+4\)

d. \(x^4+x^2+2x+6\)

Câu 2:

a. Cho \(x=a+\frac{1}{a};y=b+\frac{1}{b};z=ab+\frac{1}{ab}\left(a,b\ne0\right)\)Tính giá trị của \(M=x^2+y^2+z^2-xyz\)
b.Cho hai số a,b thoả a-b=ab=1. Tính giá trị của \(N=a^6+2a^4b^2+a^2b^4+9b^2+1989\)

c.

1.1. Cho đa thức \(P\left(x\right)=x^2-\left(m^2-2\right)x+m-35\)Xác định m để đa thức P(x) không có nghiệm bằng 5.

1.2. Cho đa thức \(Q\left(x\right)=ax^2+bx+c\)Viết a khác 0 và Q(x)>0 với mọi x thuộc R. Chừng minh: \(\frac{9a-5b+3c}{4a-2n+c}>2\)

Câu 3:

a. Tìm x,y là số tự nhiên, biết \(5^x=2^y+124\)

b.

1.1) Nếu a+b+c là số chẵn thì chứng minh: \(m=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)là số chẵn

1.2) Nếu a+b+c chia hết cho 6 thì chứng minh: \(n=\left(a+b\right)\left(b+c\right)\left(c+a\right)-2abc\)chia hết cho 6

 

0