
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


tách f(x) rồi còn thừa thiếu bao nhiêu dùng hệ số bất định là ra ngay ấy mà

2/ Ta phân tích
ax3 + bx2 + c = (x + 2)[ax2 + (b - 2a)x - 2(b - 2a)] + c + 4(b - 2a) = (x2 - 1)(ax + b) + ax + b + c
Từ đó kết hợp với đề bài ta có hệ
\(\hept{\begin{cases}c+4\left(b-2a\right)=0\\a=1\\b+c=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}\)
Ta có A = (x + y)3 + z3 + kxyz - 3xy(x + y)
= (x + y + z)[(x + y)2 - (x + y)z + z2] + xy(kz - 3x - 3y)
Nhìn vào cái này ta dễ thấy là để A chia hết cho x + y + z thì k = - 3

Đặt f(x) = \(2x^4+ax^2+bx+c\)
Áp dụng định lí Be - du ta có: r = f(x)
=> \(\left\{{}\begin{matrix}r=f\left(2\right)\\r=f\left(1\right)\\r=f\left(-1\right)\end{matrix}\right.\)
Thay x = 2; 1; -1 lần lượt vào f(x) ta được:
\(\left\{{}\begin{matrix}f\left(2\right)=32+4a+2b+c\\f\left(1\right)=2+a+b+c\\f\left(-1\right)=2+a-b+c\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}f\left(x\right)⋮\left(x-2\right)\\f\left(x\right)chia\left(x^2-1\right)dư2x\end{matrix}\right.\) => \(\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=2\\2+a-b+c=-2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=0\left(2\right)\\a-b+c=-4\left(3\right)\end{matrix}\right.\)
Trừ (2) cho (3) ta được: \(2b=4\) => b = 2
=> \(\left\{{}\begin{matrix}4a+c=-36\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ (4) cho (5) ta được: \(3a=-34\) => a = \(\dfrac{-34}{3}\) => c = \(\dfrac{28}{3}\)
Vậy a = \(\dfrac{-34}{3}\) ; b = 2 ; c = \(\dfrac{28}{3}\)
P/s: Hi vọng bn hiểu!

a) Để hàm xác định thì \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
b) Ta có: \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(\Rightarrow f\left(4-2\sqrt{3}\right)=\frac{\sqrt{4-2\sqrt{3}}+1}{\sqrt{4-2\sqrt{3}}-1}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-1}=\frac{\sqrt{3}}{\sqrt{3}-2}\)
và \(f\left(a^2\right)=\frac{\sqrt{a^2}+1}{\sqrt{a^2}-1}=\frac{\left|a\right|+1}{\left|a\right|-1}\)(với \(a\ne\pm1\))
* Nếu \(a\ge0;a\ne1\)thì \(f\left(a^2\right)=\frac{a+1}{a-1}\)
* Nếu \(a< 0;a\ne-1\)thì \(f\left(a^2\right)=\frac{a-1}{a+1}\)
c) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
Để f(x) nguyên thì \(\frac{2}{\sqrt{x}-1}\)nguyên hay \(2⋮\sqrt{x}-1\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà \(\sqrt{x}-1\ge-1\)nên ta xét ba trường hợp:
+) \(\sqrt{x}-1=-1\Rightarrow x=0\left(tmđk\right)\)
+) \(\sqrt{x}-1=1\Rightarrow x=4\left(tmđk\right)\)
+) \(\sqrt{x}-1=2\Rightarrow x=9\left(tmđk\right)\)
Vậy \(x\in\left\{0;4;9\right\}\)thì f(x) có giá trị nguyên
d) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\); \(f\left(2x\right)=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\)
f(x) = f(2x) khi \(\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{2x}+1\right)\)\(\Leftrightarrow\sqrt{2}x+\sqrt{2x}-\sqrt{x}-1=\sqrt{2}x-\sqrt{2x}+\sqrt{x}-1\)\(\Leftrightarrow\sqrt{2x}-\sqrt{x}=-\sqrt{2x}+\sqrt{x}\Leftrightarrow2\sqrt{2x}=2\sqrt{x}\Leftrightarrow\sqrt{2x}=\sqrt{x}\Leftrightarrow x=0\)(tmđk)
Vậy x = 0 thì f(x) = f(2x)

Ta có:
\(x^4+ax^2+b+1=\left(x^2+x+1\right)\left(x^2-x+a\right)+x\left(1-a\right)+b-a+1\)
Để nó là phép chia hết thì:
\(\hept{\begin{cases}1-a=0\\b-a+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=0\end{cases}}\)