Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

dầu tiên bn tìm đenta phẩy
sau đó cm nó lớn hơn 0
theo hệ thức viet tính đc x1+x2=... và x1*x2=....
thay vào hệ thức đã cho tính đc ..

dùng đen ta phẩy để giải pt.
kết quả khi m > \(\frac{5}{6}\)thì pt có nghiệm
theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)
x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)
theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
<=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)
thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.
a/ Xét phương trình : \(x^2-2\left(k-1\right)x+2\left(k-2\right)=0\)
Ta có :
\(\Delta'=b'^2-ac=\left(k-1\right)^2-2\left(k-2\right)=k^2-2k+1-2k+4=k^2-4k+5=\left(k-2\right)^2+1>0\forall k\)
\(\Leftrightarrow\) Phương trình luôn có 2 nghiệm phân biệt với mọi k
b/ Theo định lí Vi - ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2\left(k-1\right)\\x_1.x_2=\dfrac{c}{a}=2\left(k-2\right)\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=4\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=16\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow x_1^2+x_2^2+4\left(k-2\right)=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+4k-8=16\)
\(\Leftrightarrow4\left(k-1\right)^2-4\left(k-2\right)+4k-8=16\)
\(\Leftrightarrow4k^2-8k+4-4k+8+4k-8=0\)
\(\Leftrightarrow k=\pm3\)
Vậy....