
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


x^4-5x^2+4=x^4-x^2-(4x^2-4) = x^2(x^2-1)-4(x^2-1)
=(x^2-4)(x^2-1)
=(x-2)(x+2)(x-1)(x+1)

\(x^5+x^4+x^3+x^2+x+1\)
\(=\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)\)
\(=x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3+1\right)\left(x^2+x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Ta có: \(x^5+x^4+x^3+x^2+x+1\)
\(=x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x+1\right)\left(x^4+2x^2+1-x^2\right)\)
\(=\left(x+1\right)\left\lbrack\left(x^2+1\right)^2-x^2\right\rbrack=\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)

đầu tiên là bạn có thể ghi là ^3
mn gợi ý nhé, chứng minh (x+y+z)3 = x3 + y3 + z3 + 3(x+y)(y+z)(x+z)
[x+(y+z)]3 ik. còn đoạn 3(x+y)(y+z)(x+z) thì khi tách rút 3 r phân tích

bạn ơi bạn viết sai đề có đề nào viết thế này đâu?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

6, x mũ 4 - 4x mũ 3 - 8x mũ 2 + 8x =x (x+2) (x^2-6x+4)
8, x mũ 4 + 2x mũ 3 + x mũ 2 - y mũ 2 = -(y-x^2-x) (y+x^2+x)
10, 4x mũ 2 ( x + y ) -x - y = (2x-1) (2x+1) (y+x)

\(a,x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
\(b,25-4x^2-4xy-y^2\)
\(=25-\left(4x^2+4xy+y^2\right)\)
\(=5^2-\left(2x+y\right)^2\)
\(=\left(5-2x+y\right)\left(5+2x+y\right)\)
\(c,x^3-x+y^3-y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+1\right)\)

a: \(y^4+2y^3+y^2=y^2\left(y+1\right)^2\)
b: \(y^2+4y+3=\left(y+1\right)\left(y+3\right)\)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left\lbrack\left(x+y\right)^2-z\left(x+y\right)+z^2\right\rbrack-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-zy+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)