
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: (x-2)(x+3)>0
TH1: \(\begin{cases}x-2>0\\ x+3>0\end{cases}\Rightarrow\begin{cases}x>2\\ x>-3\end{cases}\Rightarrow x>2\)
TH2: \(\begin{cases}x-2<0\\ x+3<0\end{cases}\Rightarrow\begin{cases}x<2\\ x<-3\end{cases}\)
=>x<-3
b: (2x-1)(-x+1)>0
=>(2x-1)(x-1)<0
TH1: \(\begin{cases}2x-1>0\\ x-1<0\end{cases}\Longrightarrow\begin{cases}x>\frac12\\ x<1\end{cases}\)
=>\(\frac12
TH2: \(\begin{cases}2x-1<0\\ x-1>0\end{cases}\Rightarrow\begin{cases}x<\frac12\\ x>1\end{cases}\)
=>x∈∅
c: (x+1)(3x-6)<0
=>3(x+1)(x-2)<0
=>(x+1)(x-2)<0
TH1: \(\begin{cases}x+1>0\\ x-2<0\end{cases}\Rightarrow\begin{cases}x>-1\\ x<2\end{cases}\Rightarrow-1
TH2: \(\begin{cases}x+1<0\\ x-2>0\end{cases}\Rightarrow\begin{cases}x<-1\\ x>2\end{cases}\)
=>x∈∅

a) Ta có : (3x - 0.5) ( 2x + 2.5) = 0
\(\Leftrightarrow\orbr{\begin{cases}3x-0,5=0\\2x+2,5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0,5\\2x=-2,5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{0,5}{3}=\frac{1}{6}\\x=-\frac{2,5}{2}=\frac{5}{4}\end{cases}}\)

=> 4X + 10 = 110
=> 4X = 110 - 10
=> 4X = 100
=> X = 100 : 4
=> X = 25
(X+1) + (X + 2) + (X + 3) + (X + 4) = 110
<=>(x+x+x+x)+(1+2+3+4)=110
<=>4x+10=110
<=>4x=100
<=>x=25



2.(x-1)-3.(2x+2)-4.(2x+3)=16
=>2x-2-6x-6-8x-12=16
=>2x-6x-8x-(2+6+12)=16
=>x.(2-6-8)=16+20=36
=>x.(-12)=36
=>x=-3
Vậy x=-3
\(2\left(x-1\right)-3\left(2x+2\right)-4\left(2x+3\right)=16\)
\(\Leftrightarrow2x-2-6x-6-8x-12=16\)
\(\Leftrightarrow\left(2x-6x-8x\right)+\left(-2-6-12\right)=16\)
\(\Leftrightarrow-12x-20=16\)
\(\Leftrightarrow-12x=36\)
\(\Leftrightarrow x=\frac{-36}{12}-3\)

\(x:\left(3-2\right)^2=\left(3-2\right)^3\)
\(x=\left(3-2\right)^3\cdot\left(3-2\right)^2\)
\(x=\left(3-2\right)^5=1^5\)
⇒ x = 1
vậy x = 1

\(P\left(x\right)+Q\left(x\right)=x^3-2x+1+2x^2-2x^3+x-5=-x^3+2x^2-x-4\)
\(P\left(x\right)-Q\left(x\right)=x^3-2x+1-2x^2+2x^3-x+5=3x^3-2x^2-3x+6\)
Tick mình nha bạn. Chúc bạn một năm mới vui vẻ ,hạnh phúc, may mắn, học giỏi...
Để giải phương trình này, ta có thể làm như sau:
x - 3/x - 2 + x - 2/x - 4 = -1
Nhân cả hai vế của phương trình với (x - 2)(x - 4) để loại bỏ các mẫu số:
(x - 3)(x - 4) + (x - 2)(x - 4) + (x - 2)(x - 2) = -1(x - 2)(x - 4)
Mở ngoặc và rút gọn các thành phần tương tự:
x^2 - 7x + 12 + x^2 - 6x + 8 + x^2 - 4x + 4 = -x^2 + 6x - 8
3x^2 - 17x + 16 = 0
Giải phương trình bậc hai này bằng công thức:
x = [17 ± sqrt(17^2 - 4316)] / (2*3)
x = [17 ± sqrt(193)] / 6
Vậy phương trình có hai nghiệm là:
x ≈ 3.11 hoặc x ≈ 1.22