
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b, x-2+3x =10 =>2.(2x-1)=2.5 =>4x-2=10 =>4x=10+2 =>4x=12 =>x=12:4 => x=3 Vậy x=3. Mk làm đại đúng thì đúng sai thì sai nha nhg mk đoán thì đúng
a)3x−1+5.3x−1=162
⇔6.3x−1=162
⇔3x−1=27
⇔3x−1=33
⇔x−1=3
⇔x=4


a, \(\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=\frac{3}{4}-\frac{1}{2}=\frac{1}{4}\)Vậy \(x=\frac{1}{4}\)
b, \(\left|x+\frac{2}{3}\right|=\frac{5}{6}\)
TH1 : \(x+\frac{2}{3}=\frac{5}{6}\Leftrightarrow x=\frac{5}{6}-\frac{2}{3}=\frac{1}{6}\)
TH2 : \(x+\frac{2}{3}=-\frac{5}{6}\Leftrightarrow x=-\frac{5}{6}-\frac{2}{3}=\frac{-9}{6}=\frac{-3}{2}\)
Vậy \(x=\left\{\frac{1}{6};-\frac{3}{2}\right\}\)
a,\(\frac{3}{4}-x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{3}{4}-\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{4}\)
b,\(\left|x+\frac{2}{3}\right|=\frac{5}{6}\)
\(\Leftrightarrow x+\frac{2}{3}=\pm\frac{5}{6}\)
TH1:\(x+\frac{2}{3}=\frac{5}{6}\)
\(\Leftrightarrow x=\frac{5}{6}-\frac{2}{3}\)
\(\Leftrightarrow x=\frac{1}{6}\)
TH2:\(x+\frac{2}{3}=-\frac{5}{6}\)
\(\Leftrightarrow x=-\frac{5}{6}-\frac{2}{3}\)
\(\Leftrightarrow x=-\frac{3}{2}\)


Bài làm :
b)\(\left(x-1\right)^3=-125\)
\(\Leftrightarrow\left(x-1\right)^3=\left(-5\right)^3\)
\(\Leftrightarrow x-1=-5\)
\(\Leftrightarrow x=-5+1=-4\)
c) \(2^{4-x}=32\)
\(\Leftrightarrow2^{4-x}=2^5\)
\(\Leftrightarrow4-x=5\)
\(\Leftrightarrow x=4-5=-1\)
d)\(\frac{1}{4}.2^x+2.2^x=9.2^6\)
\(\Leftrightarrow2^x.\left(\frac{1}{4}+2\right)=576\)
\(\Leftrightarrow2^x=256\)
\(\Leftrightarrow x=8\)
a. ( x - 1 )3 = - 125
<=> ( x - 1 )3 = - 53
<=> x - 1 = - 5
<=> x = - 4
b. 24 - x = 32
24 - x = 25
<=> 4 - x = 5
<=> x = - 1
c. \(\frac{1}{4}.2^x+2.2^x=9.2^6\)
\(\Leftrightarrow2^x\left(\frac{1}{4}+2\right)=9.64\)
\(\Leftrightarrow2^x.\frac{9}{4}=576\)
\(\Leftrightarrow2^x=256\)
<=> 2x = 28
<=> x = 8

a) \(3^{x+1}=243\)
\(\Leftrightarrow3^{x+1}=3^5\)
\(\Leftrightarrow x+1=5\Leftrightarrow x=4\)
b) \(\left(\frac{1}{2}\right)^{x+1}=\frac{1}{64}\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^{x+1}=\left(\frac{1}{2}\right)^6\)
\(\Leftrightarrow x+1=6\Leftrightarrow x=5\)
c) \(\frac{81}{3x}=9\)
\(\Leftrightarrow3x=9\Leftrightarrow x=3\)
d) \(2^{x+1}+2^{x+2}=192\)
\(\Leftrightarrow2^x.2+2^x.4=192\)
\(\Leftrightarrow2^x.6=192\Leftrightarrow2^x=32\Leftrightarrow x=5\)
e) Ta có : \(\hept{\begin{cases}\left(x-1\right)^{2020}\ge0\\\left(y+2\right)^{2022}\ge0\end{cases}\Rightarrow\left(x-1\right)^{2020}+\left(y+2\right)^{2020}\ge0}\)
Mà \(\left(x-1\right)^{2020}+\left(y+2\right)^{2022}=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^{2020}=0\\\left(y+2\right)^{2022}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Bài giải
a, \(3^{x+1}=243\)
\(3^{x+1}=3^5\)
\(\Rightarrow\text{ }x+1=5\)
\(\Rightarrow\text{ }x=4\)
b, \(\left(\frac{1}{2}\right)^{x+1}=\frac{1}{64}\)
\(\frac{1}{2^{x+1}}=\frac{1}{2^6}\)
\(2^{x+1}=2^6\)
\(\Rightarrow\text{ }x+1=6\)
\(\Rightarrow\text{ }x=5\)
c, \(\frac{81}{3x}=9\)
\(27x=81\)
\(x=3\)
d, \(2^{x+1}+2^{x+2}=192\)
\(2^{x+1}\left(1+2\right)=192\)
\(2^{x+1}\cdot3=192\)
\(2^{x+1}=64=2^6\)
\(\Rightarrow\text{ }x+1=6\)
\(\Rightarrow\text{ }x=5\)
e, \(\left(x-1\right)^{2020}+\left(y+2\right)^{2022}=0\)
Mà \(\hept{\begin{cases}\left(x-1\right)^{2020}\ge0\\\left(y+2\right)^{2022}\ge0\end{cases}}\) với mọi x,y nên \(\hept{\begin{cases}\left(x-1\right)^{2020}=0\\\left(y+2\right)^{2022}=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
\(\Rightarrow\text{ }x=1\text{ ; }y=-2\)

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}.\)
\(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1.\)(cộng 2 vế cho 3)
\(\frac{x+1}{2009}+\frac{2009}{2009}+\frac{x+2}{2008}+\frac{2008}{2008}+\frac{x+3}{2007}+\frac{2007}{2007}=\frac{x+10}{2000}+\frac{2000}{2000}+\frac{x+11}{1999}+\frac{1999}{1999}+\frac{x+12}{1998}+\frac{1998}{1998}.\)
\(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}.\)
\(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
x+2010=0
x=-2010
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\Leftrightarrow\left(1+\frac{x+1}{2009}\right)+\left(1+\frac{x+2}{2008}\right)+\left(1+\frac{x+3}{2007}\right)\)
\(=\left(1+\frac{x+10}{2000}\right)+\left(1+\frac{x+11}{1999}\right)+\left(1+\frac{x+12}{1998}\right)\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x=2010}{1998}\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}\)
\(=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
\(\Leftrightarrow x+2010=0\)
\(\Leftrightarrow x=-2010\)

a) 2(x-1)+3(x-3)=-2 b) x-1/3=x-2/2
2x-2+3x-9=-2 2 (x-1)=3(x-2)
(2x+3x)+(-2-9)=-2 2x-2=3x-6
5x+(-11)=-2 2x-3x=-6+2
5x=-2+11 -1x=-4
5x=9 x=4
x=1,8
Nhớ nha!
\(\left(x-1\right)\left(x+1\right)\left(x+2\right)=\left(x^2-1\right)\left(x+2\right)=x^3+2x^2-x-2\)
(x – 1)(x + 1)(x + 2)
=\(\left(x^2+x-x-1\right)\left(x+2\right)\)
= \(\left(x^2-1\right)\left(x^2+2\right)\)
=\(x^2\left(x+2\right)-1\left(x+2\right)\)
=\(x^3+2x^2-x-2\)