
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\overline{aa...abb...b}=\left(\overline{cc...c}\right)^2\)
\(\Leftrightarrow a.11...1.10^n+b.11...1=c^2.11...1^2\)
\(\Leftrightarrow a.10^n+b=c^2.11...1\)
\(\Leftrightarrow a.\left(9k+1\right)+b=c^2.k\)(với \(k=11...1\)(\(n\)chữ số \(1\)))
\(\Leftrightarrow\left(c^2-9a\right)k=a+b\)
Với \(k=1\)ta có: \(c^2=10a+b\)ta có các bộ số:
\(\left(1,6,4\right),\left(2,5,5\right),\left(3,6,6\right),\left(4,9,7\right),\left(6,4,8\right),\left(8,1,9\right)\)
Với \(k=11\)ta có \(11\left(c^2-9a\right)=a+b\)nên \(\hept{\begin{cases}a+b=11\\c^2-9a=1\end{cases}}\)ta có nghiệm duy nhất \(\left(7,4,8\right)\).
Với \(n>2\)ta thấy hiển nhiên không thỏa mãn do \(a+b< 19\).
Ở đây mình làm trường hợp là nó đúng chỉ với 1 giá trị của \(n\). Do đó ta xét với \(n=1,n=2,...\), tức là \(k=1,k=11,...\). Còn nếu đề là đúng với mọi số nguyên dương \(n\)thì sẽ làm khác một chút, và ra đáp án là không tồn tại giá trị nào cả.

Bạn kham khảo nhé!
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM
Nó có thể giúp ích cho bạn!

Mình chỉ biết câu 2 thoi được hong?
n2+n+1
= n2+n+\(\frac{1}{4}\)+\(\frac{3}{4}\)
= (n+\(\frac{1}{2}\))2 +\(\frac{3}{4}\)
Chứng tỏ đó không phải là số chính phương
Trả lời câu 1 thôi nha
Xét \(ab+cd=ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)\)Vì a^2+b^2=c^2+d^2=1
\(=\)\(abc^2+abd^2+a^2cd+b^2cd\)
\(=ad\left(bd+ac\right)+bc\left(bd+ac\right)\)
\(=\left(ad+bc\right)\left(bd+ac\right)=0\left(đpcm\right)\)

a: Ta có: \(a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
=>a=b=c
b: ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)