
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)
\(=a-1\)
b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)
\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)
c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)


a) \(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )
=>đpcm
Cô si
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)
Cộng lại ta có:
\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)

trả lời
dùng bất đẳng thức cosi cho 2 số ko âm
sử dụng cộng mỗi cặp trên
đc 3 cặp
cộng lại là ra

Nhìn giả thiết thấy nản quả:(
BĐT \(\Leftrightarrow\Sigma_{cyc}\frac{\left(ab+bc+ca\right)\left(a+b\right)}{a^2+b^2}\le3\left(ab+bc+ca\right)\) (nhân ab +bc +ca vào hai vế)
\(\Leftrightarrow\Sigma_{cyc}\frac{\left(ab+bc+ca\right)\left(a+b\right)}{a^2+b^2}\le3\left(a+b+c\right)\) (chú ý giả thiết ab + bc +ca = a + b + c)
\(VT=\Sigma_{cyc}\frac{ab\left(a+b\right)}{a^2+b^2}+\Sigma_{cyc}\frac{c\left(a+b\right)^2}{a^2+b^2}\)
\(\le\Sigma_{cyc}\frac{ab\left(a+b\right)}{2ab}+\Sigma_{cyc}\frac{2c\left(a^2+b^2\right)}{a^2+b^2}=3\left(a+b+c\right)\)
Vậy ta có đpcm.Đẳng thức xảy ra khi a = b = c

a^4 +b^4 >= ab^3 +a^3 b (1)
<=> 4a^4 +4b^4 - 4ab(a^2 +b^2) >= 0
<=> [(a^2 +b^2 )^2 - 4ab(a^2 +a^2) +4a^2 b^2 ] +3a^4 +3b^4 -6a^2 b^2 >=0
<=> (a -b )^4 +3(a^4 + b^4 -2a^2 b^2 ) >= 0 (2)
cos (a-b )^4 >= 0
a^4 + b^4 >= 2a^2 b^2 (co si có thể không cần co si cũng được )
=> (2) đúng => (1) đúng => dpcm
b) a^2 +b^2 +1 >= ab +a+b (1)
<=>2a^2 +2b^2 +2 -2ab -2a-2b >=0
<=>[a^2 +b^2 -2ab ] +[a^2 -2a +1] +[b^2 -2b +1 ] >=0
<=>(a -b)^2 +(a-1)^2 + (b-1)^2 >=0 (2)
(2) đúng (1) đúng => dpcm