
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Cách lấy ra một tổ hợp chập 3 của 5 phần tử trong A là: Chọn bất kỳ 3 trong 5 phần tử thuộc A ví dụ như \(\left\{ {a;b;c} \right\}\)
b) Cách lấy ra một chỉnh hợp chập 3 của 5 phần tử trong A là: Chọn bất kỳ 3 trong 5 phần tử thuộc A rồi sắp xếp theo một thứ tự nào ví dụ như ta chọn 3 phần tử a,b,c rồi sắp xếp theo thứ tự ngược của bảng chữ cái \(\left\{ {c;b;a} \right\}\)
c) So sánh: Mỗi tổ hợp chập 3 của 5 phần tử sinh ra 3! chỉnh hợp chập 3 của 5 phần tử vì có 3! hoán vị của 3 phần tử. Vì thế, số chỉnh hợp chập 3 của 5 phần tử nhiều gấp 3! lần số tổ hợp chập 3 của 5 phần tử.

Tập hợp C rỗng vì \(x^2+7x+12=0\Leftrightarrow x\in\left\{-3;-4\right\}\notin N\)
\(a,\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\}\\ b,\left\{1\right\};\left\{2\right\};\left\{3\right\};\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\};\left\{1;2;3\right\}\)
\(X=\left\{1;3\right\}\\ X=\left\{1;2;3\right\}\\ X=\left\{1;3;4\right\}\\ X=\left\{1;3;5\right\}\\ X=\left\{1;2;3;4\right\}\\ X=\left\{1;2;3;5\right\}\\ X=\left\{1;3;4;5\right\}\\ X=\left\{1;2;3;4;5\right\}\)

Do \(A\) là tập hợp có \(6\) phần tử nên số tập hợp con khác rỗng và khác \(A\) của tập hợp \(A\) là: \(2^{6} - 2 = 62\) (tập hợp con).
Xét tập hợp \(X\) là tập con bất kì trong \(62\) tập hợp con trên và \(T \left(\right. X \left.\right)\) là tổng các phần tử của \(X\).
Tập hợp \(X\) có nhiều nhất \(5\) phần tử thuộc tập hợp \(\left{\right. 0 ; 1 ; 2 ; . . . ; 14 \left.\right}\) nên ta có:
\(0 \leq T \left(\right. X \left.\right) \leq 10 + 11 + 12 + 13 + 14 = 60\).
Như vậy với \(62\) tập hợp con của \(A\) như trên thì tồn tại \(62\) tổng không vượt quá \(60\).
Theo nguyên lí Dirichlet thì tồn tại hai tổng có giá trị bằng nhau. Điều đó chứng tỏ tồn tại hai tập hợp con \(B_{1}\), \(B_{2}\) của tập hợp \(A\) có tổng các phần tử của chúng bằng nhau.

1. a) Tập hợp con của A: {a} và \(\varnothing\)
b) Tập hợp con của B: {a}; {b}; {a;b} và \(\varnothing\)
c) Tập hợp con: \(\varnothing\)
2. a) A có 1 phần tử thì A sẽ có: 21=2 (tập hợp con)
b) A có 2 phần tử thì A sẽ có: 22=4 (tập hợp con)
c) A có 3 phần tử thì A sẽ có: 23=8 (tập hợp con)
*Cách tính số tập hợp con: Nếu tập hợp A có n phần tử thì A sẽ có 2n tập hợp con.

a: Các tập con là {1}; {2}; {1;2}; \(\varnothing\)
Các tập con có 2 phần tử là {1;2}
b: Các tập con là {1}; {2}; {3}; {1;2}; {2;3}; {1;3}; {1;2;3}; \(\varnothing\)
Các tập con có 2 phần tử là {1;2}; {2;3}; {1;3}
c: Các tập con là {a}; {b}; {c}; {a;b}; {b;c}; {a;c}; {a;b;c}; \(\varnothing\)
Các tập con có 2 phần tử là {a;b}; {b;c}; {a;c}
d: 2x^2-5x+2=0
=>2x^2-4x-x+2=0
=>(x-2)(2x-1)=0
=>x=1/2 hoặc x=2
=>D={1/2;2}
Các tập con là {1/2}; {2}; {1/2;2}; \(\varnothing\)
Các tập con có 2 phần tử là {1/2; 2}

Lời giải:
a)
\(\forall x\in\mathbb{Z}\) , để \(\frac{x^2+2}{x}\in\mathbb{Z}|\Leftrightarrow x+\frac{2}{x}\in\mathbb{Z}\Leftrightarrow \frac{2}{x}\in\mathbb{Z}\Leftrightarrow 2\vdots x\)
\(\Rightarrow x\in \left\{\pm 1;\pm 2\right\}\)
Vậy \(A=\left\{-2;-1;1;2\right\}\)
b)
Các tập con của A mà số phần tử nhỏ hơn 3 là:
\(\left\{-2\right\}; \left\{-1\right\};\left\{1\right\};\left\{2\right\}\)
\(\left\{-2;-1\right\}; \left\{-2;1\right\}; \left\{-2;2\right\};\left\{-1;1\right\};\left\{-1;2\right\}; \left\{1;2\right\}\)
Lời giải:
a)
\(\forall x\in\mathbb{Z}\) , để \(\frac{x^2+2}{x}\in\mathbb{Z}|\Leftrightarrow x+\frac{2}{x}\in\mathbb{Z}\Leftrightarrow \frac{2}{x}\in\mathbb{Z}\Leftrightarrow 2\vdots x\)
\(\Rightarrow x\in \left\{\pm 1;\pm 2\right\}\)
Vậy \(A=\left\{-2;-1;1;2\right\}\)
b)
Các tập con của A mà số phần tử nhỏ hơn 3 là:
\(\left\{-2\right\}; \left\{-1\right\};\left\{1\right\};\left\{2\right\}\)
\(\left\{-2;-1\right\}; \left\{-2;1\right\}; \left\{-2;2\right\};\left\{-1;1\right\};\left\{-1;2\right\}; \left\{1;2\right\}\)

a/
\(\Leftrightarrow2m+3\ge m+1\Leftrightarrow m\ge-2\)
b/
Tổng 3 phần tử chẵn \(\Rightarrow\) có các trường hợp:
- Cả 3 phần tử đều chẵn: có đúng 1 tập \(\left\{2;4;6\right\}\)
- 2 phần tử lẻ và 1 phần tử chẵn: chọn 2 phần tử lẻ từ 3 phần tử lẻ có 3 cách, kết hợp với 1 trong 3 phần tử chẵn \(\Rightarrow3.3=9\) tập
Vậy có 10 tập thỏa mãn
Tất cả các tổ hợp chập 2 của 3 phần tử a,b,c là các tập con gồm 2 phần tử được lấy ra từ tập hợp gồm 3 phần từ a,b,c là: \(\left\{ {a;b} \right\},\left\{ {a;c} \right\},\left\{ {b;c} \right\}\)