
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


????????????????????????????????????????????????????????????????

Tích của 2 số tự nhiên liên tiếp chia hết cho 3 hoặc chia cho 3 dư 2
Vì 350 + 1 chia cho 3 dư 1 nên nó không thể là tích của hai số tự nhiên liên tiếp

phương trình này vẫn có nghiệm mà chỉ là vô tỉ thôi, không vô nghiệm được

Vì mỗi phần tử ở 1 tập hợp đều chỉ xuất hiện 1 lần mà ở tập hợp A lại xuất hiện 4 lần lên 4
=> Tập hợp A = { 1 }
Tập hợp A là tập hợp của con của tập hợp B
Vì phần tử ở tập hợp A đều thuộc tập hợp B
=> A là tập hợp con của B
... Cho em thắc mắc ạ, em không tìm đọc ở đâu có ghi rằng mỗi phần tử ở 1 tập hợp đều chỉ được phép xuất hiện 1 lần.
Nếu theo ý thầy thì đó là dạng tập hợp tổng quát.
Vậy ta phải kết luận là tập hợp tổng quát của A là A1 = { 1 } là tập con của B mới đúng chứ ạ.
Còn A có đến tận 4 số 1, trong khi B chỉ có 1 số 1, nếu thế bản chất là số lượng phần tử số 1 của A lớn hơn số lượng phần tử số 1 của B vậy A không thể là tập con của B ạ.
Khi vẽ ra sơ đồ ta sẽ thấy ngay ạ...
Mong thầy giải đáp giúp ạ
2 3 4 1 1 1 1

vì n là số nguyên suy ra n chia hết cho 3 chia 3 dư 1 hoặc chia 3 dư 2 nên n chỉ có thể là 3k+1,3k+2 hoặc 3k .nếu n = 3k+3 thì n sẽ tg tự với 3k vì chia hết cho 3

Giải bằng phương pháp hàm số tức là sử dụng đạo hàm để khảo sát đặc điểm của hàm số (tính đơn điệu, cực trị, ... ) bạn nhé.
Đặt f(x)=\(x^5+x^3-\sqrt{1-3x}+4\) với tập xác định \(D=(-\infty;\frac{1}{3}]\)
Xét đạo hàm f'(x) = \(5x^4+3x^2+\frac{3}{2\sqrt{1-3x}}>0\)\(\forall x\in D\)
Từ đó suy ra hàm số y=f(x) đồng biến trên tập xác định D của nó. Suy ra hàm số NẾU có nghiệm thì chỉ có duy nhất một nghiệm.
Mà ta lại nhẩm được f(-1)=0. Vậy phương trình có nghiệm duy nhất \(x=-1\)


bởi vì
có 1 + 1 = 2
mà 2 -1 =1 và 1=1=2-1
nên suy ra
.
.
.
.
.
..
tớ chịu
vì 2-1=1 mà 3-1 không bằng 1