
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài tập dạng này có nhiều trường hợp về hình vẽ. Chỉ yêu cầu HS vẽ đúng một trường hợp, riêng với các ý c, d, và e chú ý có 2 trường hợp về hình vẽ:

a) Ta có \(\widehat{xOy}\) và \(\widehat{yOz}\) là 2 góc kề bù (theo đề)
\(\Rightarrow\widehat{xOy}+\widehat{yOz}=180^0\)
Hay \(50^0+\widehat{yOz}=180^0\)
\(\Rightarrow\widehat{yOz}=130^0\)
b) Góc mOn ..... bn tự lm ik
Ta có: Om là tia phân giác của \(\widehat{xOy}\) (theo đề)
\(\Rightarrow\)\(\widehat{xOm}=\widehat{yOm}=\frac{\widehat{xOy}}{2}=\frac{50^0}{2}=25^0\)
Lại có : On là tia phân giác của \(\widehat{yOz}\) (theo đề)
\(\Rightarrow\)\(\widehat{yOn}=\widehat{zOn}=\frac{\widehat{yOz}}{2}=\frac{130^0}{2}=65^0\)
Ta lại có: \(\widehat{mOy} + \widehat{nOy} = 25^0 + 65^0 = 90^0\)
Do đó 2 góc mOy và nOy phụ nhau.

Từ giả thiết ta vẽ được hình bs.15
Vì góc nOp kề bù với góc mOn suy ra góc mOp là góc bẹt.
Vì ∠(mOn) =30o và góc pOq phụ với góc mOn nên ∠(pOq) = 60o
Vì ∠(mOn) =30o và góc nOp kề bù với góc mOn nên ∠(nOp) = 150o
Do tia Oq nằm trong góc nOp nên ∠(nOp) = ∠(nOq) + ∠(qOp) hay ∠(nOq) + 60o = 150o. Từ đó (nOq) =90o.

2. x y x' O 80 0
Giải: Ta có : \(\widehat{xOy}+\widehat{yOx'}=180^0\)(kề bù)
=> \(\widehat{yOx'}=180^0-\widehat{xOy}=180^0-80^0=100^0\)
=> \(\widehat{xOy}< \widehat{xOy'}\)(800 < 1000)
Vậy ....
3. O a b c
Giải: Ta có: \(\widehat{aOb}+\widehat{bOc}=90^0\)(phụ nhau )
hay 2.\(\widehat{bOC}+\widehat{bOc}=90^0\)
=> \(\widehat{bOc}.\left(2+1\right)=90^0\)
=> \(\widehat{bOc}.3=90^0\)
=> \(\widehat{bOc}=90^0:3=30^0\)
=> \(\widehat{aOb}=90^0-30^0=60^0\)
Vậy ...